Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Sheue-Yann Cheng x
Clear All Modify Search
Full access

Sunmi Park, Mark C Willingham, Jun Qi and Sheue-Yann Cheng

Compelling epidemiological evidence shows a strong positive correlation of obesity with thyroid cancer. In vivo studies have provided molecular evidence that high-fat-diet-induced obesity promotes thyroid cancer progression by aberrantly activating leptin-JAK2-STAT3 signaling in a mouse model of thyroid cancer (Thrb PV/PV Pten +/ mice). The Thrb PV/PV Pten +/ mouse expresses a dominantly negative thyroid hormone receptor β (denoted as PV) and a deletion of one single allele of the Pten gene. The Thrb PV/PV Pten +/ mouse spontaneously develops follicular thyroid cancer, which allows its use as a preclinical mouse model to test potential therapeutics. We recently showed that inhibition of STAT3 activity by a specific inhibitor markedly delays thyroid cancer progression in high-fat-diet-induced obese Thrb PV/PV Pten +/ mice (HFD-Thrb PV/PV Pten +/ mice). Further, metformin, a widely used antidiabetic drug, blocks invasion and metastasis, but not thyroid tumor growth in HFD-Thrb PV/PV Pten +/ mice. To improve efficacy in reducing thyroid tumor growth, we treated HFD-Thrb PV/PV Pten +/ with JQ1, a potent inhibitor of the activity of bromodomain and extraterminal domain (BET) and with metformin. We found that the combined treatment synergistically suppressed thyroid tumor growth by attenuating STAT3 and ERK signaling, resulting in decreased anti-apoptotic key regulators such as Mcl-1, Bcl-2 and survivin and increased pro-apoptotic regulators such as Bim, BAD and cleave caspase 3. Furthermore, combined treatment of JQ1 and metformin reduced cMyc protein levels to suppress vascular invasion, anaplasia and lung metastasis. These findings indicate that combined treatment is more effective than metformin alone and suggest a novel treatment modality for obesity-activated thyroid cancer.

Full access

Xuguang Zhu, Dong Wook Kim, Li Zhao, Mark C Willingham and Sheue-yann Cheng

Thyroid cancer is on the rise. Novel approaches are needed to improve the outcome of patients with recurrent and advanced metastatic thyroid cancers. FDA approval of suberoylanilide hydroxamic acid (SAHA; vorinostat), an inhibitor of histone deacetylase, for the treatment of hematological malignancies led to the clinical trials of vorinostat for advanced thyroid cancer. However, patients were resistant to vorinostat treatment. To understand the molecular basis of resistance, we tested the efficacy of SAHA in two mouse models of metastatic follicular thyroid cancer: ThrbPV/PV and ThrbPV/PVPten+/− mice. In both, thyroid cancer is driven by overactivation of PI3K-AKT signaling. However, the latter exhibit more aggressive cancer progression due to haplodeficiency of the tumor suppressor, the Pten gene. SAHA had no effects on thyroid cancer progression in ThrbPV/PV mice, indicative of resistance to SAHA. Unexpectedly, thyroid cancer progressed in SAHA-treated ThrbPV/PVPten+/− mice with accelerated occurrence of vascular invasion, anaplastic foci, and lung metastasis. Molecular analyses showed further activated PI3K-AKT in thyroid tumors of SAHA-treated ThrbPV/PVPten+/− mice, resulting in the activated effectors, p-Rb, CDK6, p21Cip1, p-cSrc, ezrin, and matrix metalloproteinases, to increase proliferation and invasion of tumor cells. Single-molecule DNA analysis indicated that the wild-type allele of the Pten gene was progressively lost, whereas carcinogenesis progressed in SAHA-treated ThrbPV/PVPten+/− mice. Thus, this study has uncovered a novel mechanism by which SAHA-induced loss of the tumor suppressor Pten gene to promote thyroid cancer progression. Effectors downstream of the Pten loss-induced signaling may be potential targets to overcome resistance of thyroid cancer to SAHA.

Full access

Jeong Won Park, Cho Rong Han, Li Zhao, Mark C Willingham and Sheue-yann Cheng

Compelling epidemiologic studies indicate that obesity is a risk factor for many human cancers, including thyroid cancer. In recent decades, the incidence of thyroid cancer has dramatically increased along with a marked rise in obesity prevalence. We previously demonstrated that a high fat diet (HFD) effectively induced the obese phenotype in a mouse model of thyroid cancer (Thrb PV/PV Pten +/− mice). Moreover, HFD activates the STAT3 signal pathway to promote more aggressive tumor phenotypes. The aim of the present study was to evaluate the effect of S3I-201, a specific inhibitor of STAT3 activity, on HFD-induced aggressive cancer progression in the mouse model of thyroid cancer. WT and Thrb PV/PV Pten +/− mice were treated with HFD together with S3I-201 or vehicle-only as controls. We assessed the effects of S3I-201 on HFD-induced thyroid cancer progression, the leptin-JAK2-STAT3 signaling pathway, and key regulators of epithelial-mesenchymal transition (EMT). S3I-201 effectively inhibited HFD-induced aberrant activation of STAT3 and its downstream targets to markedly inhibit thyroid tumor growth and to prolong survival. Decreased protein levels of cyclins D1 and B1, cyclin dependent kinase 4 (CDK4), CDK6, and phosphorylated retinoblastoma protein led to the inhibition of tumor cell proliferation in S3I-201-treated Thrb PV/PV Pten +/− mice. Reduced occurrence of vascular invasion and blocking of anaplasia and lung metastasis in thyroid tumors of S3I-201-treated Thrb PV/PV Pten +/− mice were mediated via decreased expression of vimentin and matrix metalloproteinases, two key effectors of EMT. The present findings suggest that inhibition of the STAT3 activity would be a novel treatment strategy for obesity-induced thyroid cancer.