Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Stefan R Bornstein x
Clear All Modify Search
Open access

Martin Ullrich, Josephine Liers, Mirko Peitzsch, Anja Feldmann, Ralf Bergmann, Ulrich Sommer, Susan Richter, Stefan R Bornstein, Michael Bachmann, Graeme Eisenhofer, Christian G Ziegler and Jens Pietzsch

Somatostatin receptor-targeting endoradiotherapy offers potential for treating metastatic pheochromocytomas and paragangliomas, an approach likely to benefit from combination radiosensitization therapy. To provide reliable preclinical in vivo models of metastatic disease, this study characterized the metastatic spread of luciferase-expressing mouse pheochromocytoma (MPC) cells in mouse strains with different immunologic conditions. Bioluminescence imaging showed that, in contrast to subcutaneous non-metastatic engraftment of luciferase-expressing MPC cells in NMRI-nude mice, intravenous cell injection provided only suboptimal metastatic spread in both NMRI-nude mice and hairless SCID (SHO) mice. Treatment of NMRI-nude mice with anti-Asialo GM1 serum enhanced metastatic spread due to substantial depletion of natural killer (NK) cells. However, reproducible metastatic spread was only observed in NK cell-defective SCID/beige mice and in hairless immunocompetent SKH1 mice bearing disseminated or liver metastases, respectively. Liquid chromatography tandem mass spectrometry of urine samples showed that subcutaneous and metastasized tumor models exhibit comparable renal monoamine excretion profiles characterized by increasing urinary dopamine, 3-methoxytyramine, norepinephrine and normetanephrine. Metastases-related epinephrine and metanephrine were only detectable in SCID/beige mice. Positron emission tomography and immunohistochemistry revealed that all metastases maintained somatostatin receptor-specific radiotracer uptake and immunoreactivity, respectively. In conclusion, we demonstrate that intravenous injection of luciferase-expressing MPC cells into SCID/beige and SKH1 mice provides reproducible and clinically relevant spread of catecholamine-producing and somatostatin receptor-positive metastases. These standardized preclinical models allow for precise monitoring of disease progression and should facilitate further investigations on theranostic approaches against metastatic pheochromocytomas and paragangliomas.

Free access

Graeme Eisenhofer, Karel Pacak, Thanh-Truc Huynh, Nan Qin, Gennady Bratslavsky, W Marston Linehan, Massimo Mannelli, Peter Friberg, Stefan K Grebe, Henri J Timmers, Stefan R Bornstein and Jacques W M Lenders

Phaeochromocytomas and paragangliomas (PPGLs) are highly heterogeneous tumours with variable catecholamine biochemical phenotypes and diverse hereditary backgrounds. This analysis of 18 catecholamine-related plasma and urinary biomarkers in 365 patients with PPGLs and 846 subjects without PPGLs examined how catecholamine metabolomic profiles are impacted by hereditary background and relate to variable hormone secretion. Catecholamine secretion was assessed in a subgroup of 156 patients from whom tumour tissue was available for measurements of catecholamine contents. Among all analytes, the free catecholamine O-methylated metabolites measured in plasma showed the largest tumour-related increases relative to the reference group. Patients with tumours due to multiple endocrine neoplasia type 2 and neurofibromatosis type 1 (NF1) showed similar catecholamine metabolite and secretory profiles to patients with adrenaline-producing tumours and no evident hereditary background. Tumours from these three patient groups contained higher contents of catecholamines, but secreted the hormones at lower rates than tumours that did not contain appreciable adrenaline, the latter including PPGLs due to von Hippel–Lindau (VHL) and succinate dehydrogenase (SDH) gene mutations. Large increases of plasma dopamine and its metabolites additionally characterised patients with PPGLs due to the latter mutations, whereas patients with NF1 were characterised by large increases in plasma dihydroxyphenylglycol and dihydroxyphenylacetic acid, the deaminated metabolites of noradrenaline and dopamine. This analysis establishes the utility of comprehensive catecholamine metabolite profiling for characterising the distinct and highly diverse catecholamine metabolomic and secretory phenotypes among different groups of patients with PPGLs. The data further suggest developmental origins of PPGLs from different populations of chromaffin cell progenitors.

Open access

Paraskevi Xekouki, Emily J Lodge, Jakob Matschke, Alice Santambrogio, John R Apps, Ariane Sharif, Thomas S Jacques, Simon Aylwin, Vincent Prevot, Ran Li, Jörg Flitsch, Stefan R Bornstein, Marily Theodoropoulou and Cynthia L Andoniadou

Tumours of the anterior pituitary can manifest from all endocrine cell types but the mechanisms for determining their specification are not known. The Hippo kinase cascade is a crucial signalling pathway regulating growth and cell fate in numerous organs. There is mounting evidence implicating this in tumour formation, where it is emerging as an anti-cancer target. We previously demonstrated activity of the Hippo kinase cascade in the mouse pituitary and nuclear association of its effectors YAP/TAZ with SOX2-expressing pituitary stem cells. Here, we sought to investigate whether these components are expressed in the human pituitary and if they are deregulated in human pituitary tumours. Analysis of pathway components by immunofluorescence reveals pathway activity during normal human pituitary development and in the adult gland. Poorly differentiated pituitary tumours (null-cell adenomas, adamantinomatous craniopharyngiomas (ACPs) and papillary craniopharyngiomas (PCPs)), displayed enhanced expression of pathway effectors YAP/TAZ. In contrast, differentiated adenomas displayed lower or absent levels. Knockdown of the kinase-encoding Lats1 in GH3 rat mammosomatotropinoma cells suppressed Prl and Gh promoter activity following an increase in YAP/TAZ levels. In conclusion, we have demonstrated activity of the Hippo kinase cascade in the human pituitary and association of high YAP/TAZ with repression of the differentiated state both in vitro and in vivo. Characterisation of this pathway in pituitary tumours is of potential prognostic value, opening up putative avenues for treatments.

Free access

Graeme Eisenhofer, Stefan R Bornstein, Frederieke M Brouwers, Nai-Kong V Cheung, Patricia L Dahia, Ronald R de Krijger, Thomas J Giordano, Lloyd A Greene, David S Goldstein, Hendrik Lehnert, William M Manger, John M Maris, Hartmut P H Neumann, Karel Pacak, Barry L Shulkin, David I Smith, Arthur S Tischler and William F Young Jr

Pheochromocytomas are rare catecholamine-producing neuroendocrine tumors that are usually benign, but which may also present as or develop into a malignancy. Predicting such behavior is notoriously difficult and there are currently no curative treatments for malignant tumors. This report follows from a workshop at the Banbury Conference Center, Cold Spring Harbor, New York, on the 16th–18th November 2003, held to review the state of science and to facilitate future progress in the diagnosis and treatment of malignant pheochromocytoma. The rarity of the tumor and the resulting fragmented nature of studies, typically involving small numbers of patients, represent limiting factors to the development of effective treatments and diagnostic or prognostic markers for malignant disease. Such development is being facilitated by the availability of new genomics-based tools, but for such approaches to succeed ultimately requires comprehensive clinical studies involving large numbers of patients, stringently collected clinical data and tumor samples, and interdisciplinary collaborations among multiple specialist centers. Nevertheless, the well-characterized hereditary basis and the unique functional nature of these neuroendocrine tumors provide a useful framework that offers advantages for establishing the pathways of tumorigenesis and malignancy. Such findings may have relevance for understanding the basis of other more common malignancies where similar frameworks are not available. As the relevant pathways leading to pheochromocytoma are established it should be possible to take advantage of the new generation of drugs being developed to target specific pathways in other malignancies. Again the success of this will require well-designed and coordinated multicenter studies.