Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Stephen D Hursting x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Emma H Allott and Stephen D Hursting

Obesity is associated with a range of health outcomes that are of clinical and public health significance, including cancer. Herein, we summarize epidemiologic and preclinical evidence for an association between obesity and increased risk of breast and prostate cancer incidence and mortality. Moreover, we describe data from observational studies of weight change in humans and from calorie-restriction studies in mouse models that support a potential role for weight loss in counteracting tumor-promoting properties of obesity in breast and prostate cancers. Given that weight loss is challenging to achieve and maintain, we also consider evidence linking treatments for obesity-associated co-morbidities, including metformin, statins and non-steroidal anti-inflammatory drugs, with reduced breast and prostate cancer incidence and mortality. Finally, we highlight several challenges that should be considered when conducting epidemiologic and preclinical research in the area of obesity and cancer, including the measurement of obesity in population-based studies, the timing of obesity and weight change in relation to tumor latency and cancer diagnosis, and the heterogeneous nature of obesity and its associated co-morbidities. Given that obesity is a complex trait, comprised of behavioral, epidemiologic and molecular/metabolic factors, we argue that a transdisciplinary approach is the key to understanding the mechanisms linking obesity and cancer. As such, this review highlights the critical need to integrate evidence from both epidemiologic and preclinical studies to gain insight into both biologic and non-biologic mechanisms contributing to the obesity-cancer link.

Free access

Nikki A Ford, Nomeli P Nunez, Valerie B Holcomb, and Stephen D Hursting

Luminal breast tumors with little or no estrogen receptor α expression confer poor prognosis. Using the Met1 murine model of luminal breast cancer, we characterized the IGF1-dependency of diet-induced obesity (DIO) and calorie restriction (CR) effects on tumor growth, growth factor signaling, epithelial-to-mesenchymal transition (EMT), and chemokine expression. Liver-specific IGF1-deficient (LID) and littermate control (LC) mice were administered control, DIO, or 30% CR diets for 3 months before orthotopic injection of Met1 cells. Tumors grew for 1 month and then were assessed for Akt pathway activation and mRNA expression of chemokine and EMT constituents. LID mice, regardless of diet, displayed reduced Met1 tumor growth and downregulated Akt, EMT, and chemokine pathways. CR, relative to control, reduced serum IGF1 and Met1 tumor growth in LC (but not LID) mice. DIO, relative to control, increased Met1 tumor growth and chemokine expression in LID mice, and had no effect on serum IGF1 or pAkt or cyclin D1 expression in either genotype. Thus, circulating IGF1 (in association with Akt, EMT, and chemokines) regulated Met1 tumor growth. While the anticancer effects of CR were largely IGF1-dependent, the procancer effects of DIO manifested only when circulating IGF1 levels were low. Thus, in a murine model of luminal breast cancer, IGF1 and its downstream signaling pathway, EMT, and chemokines present possible mechanistic regulatory targets. Transplanted MMTV1 Wnt1 mammary tumor growth was also reduced in LID mice, relative to LC mice, suggesting that the IGF1 effects on mammary tumor growth are not limited to Met1 tumors.

Free access

Leticia M Nogueira, Sarah M Dunlap, Nikki A Ford, and Stephen D Hursting

Obesity is an established risk and progression factor for postmenopausal breast cancer. Interventions to decrease caloric intake and/or increase energy expenditure beneficially impact tumor progression in normoweight humans and animal models. However, despite the increasingly high global prevalence of obesity, the effects and underlying mechanisms of these energy balance modulating interventions are poorly characterized in obese individuals. The goal of this study was to better characterize the mechanism(s) responsible for the link between energy balance and breast cancer progression in the postmenopausal obesity context. We compared the effects of calorie restriction (CR), treadmill exercise (EX), and mammalian target of rapamycin (mTOR inhibitor) treatment on body composition, serum biomarkers, cellular signaling, and mammary tumor growth in obese mice. Ovariectomized C57BL/6 mice were administered a diet-induced obesity regimen for 8 weeks, then randomized into three treatment groups: control (semipurified diet fed ad libitum, maintained the obese state); 30% CR (isonutrient relative to control except 30% reduction in carbohydrate calories); and EX (control diet fed ad libitum plus treadmill exercise). Mice were implanted with syngeneic MMTV-Wnt-1 mammary tumor cells at week 12. Rapamycin treatment (5 mg/kg every 48 h) started at week 14. Tumors were excised at week 18. CR and rapamycin (but not EX) significantly reduced final tumor weight compared to control. In follow-up analysis, constitutive activation of mTOR ablated the inhibitory effects of CR on Wnt-1 mammary tumor growth. We conclude that mTOR inhibition may be a pharmacologic strategy to mimic the anticancer effects of CR and break the obesity–breast cancer progression link.

Free access

Qiao Zheng, Sarah M Dunlap, Jinling Zhu, Erinn Downs-Kelly, Jeremy Rich, Stephen D Hursting, Nathan A Berger, and Ofer Reizes

Obesity increases both the risk and mortality associated with many types of cancer including that of the breast. In mice, obesity increases both incidence of spontaneous tumors and burden of transplanted tumors. Our findings identify leptin, an adipose secreted cytokine, in promoting increased mammary tumor burden in obese mice and provide a link between this adipokine and cancer. Using a transplantable tumor that develops spontaneously in the murine mammary tumor virus-Wnt-1 transgenic mice, we show that tumors transplanted into obese leptin receptor (LepRb)-deficient (db/db) mice grow to eight times the volume of tumors transplanted into lean wild-type (WT) mice. However, tumor outgrowth and overall tumor burden is reduced in obese, leptin-deficient (ob/ob) mice. The residual tumors in ob/ob mice contain fewer undifferentiated tumor cells (keratin 6 immunopositive) compared with WT or db/db mice. Furthermore, tumors in ob/ob mice contain fewer cells expressing phosphorylated Akt, a growth promoting kinase activated by the LepRb, compared with WT and db/db mice. In vivo limiting dilution analysis of residual tumors from ob/ob mice indicated reduced tumor initiating activity suggesting fewer cancer stem cells (CSCs). The tumor cell populations reduced by leptin deficiency were identified by fluorescence-activated cell sorting and found to express LepRb. Finally, LepRb expressing tumor cells exhibit stem cell characteristics based on the ability to form tumorspheres in vitro and leptin promotes their survival. These studies provide critical new insight on the role of leptin in tumor growth and implicate LepRb as a CSC target.

Free access

Qiao Zheng, Lauren Banaszak, Sarah Fracci, Diana Basali, Sarah M Dunlap, Stephen D Hursting, Jeremy N Rich, Anita B Hjlemeland, Amit Vasanji, Nathan A Berger, Justin D Lathia, and Ofer Reizes

Despite new therapies, breast cancer continues to be the second leading cause of cancer mortality in women, a consequence of recurrence and metastasis. In recent years, a population of cancer cells has been identified, called cancer stem cells (CSCs) with self-renewal capacity, proposed to underlie tumor recurrence and metastasis. We previously showed that the adipose tissue cytokine LEPTIN, increased in obesity, promotes the survival of CSCs in vivo. Here, we tested the hypothesis that the leptin receptor (LEPR), expressed in mammary cancer cells, is necessary for maintaining CSC-like and metastatic properties. We silenced LEPR via shRNA lentivirus transduction and determined that the expression of stem cell self-renewal transcription factors NANOG, SOX2, and OCT4 (POU5F1) is inhibited. LEPR-NANOG signaling pathway is conserved between species because we can rescue NANOG expression in human LEPR-silenced cells with the mouse LepR. Using a NANOG promoter GFP reporter, we showed that LEPR is enriched in NANOG promoter active (GFP+) cells. In lineage tracing studies, we showed that the GFP+ cells divide in a symmetric and asymmetric manner. LEPR-silenced MDA-MB-231 cells exhibit a mesenchymal to epithelial transition morphologically, increased E-CADHERIN and decreased VIMENTIN expression compared with control cells. Finally, LEPR-silenced cells exhibit reduced cell proliferation, self-renewal in tumor sphere assays, and tumor outgrowth in xenotransplant studies. Given the emergence of NANOG as a pro-carcinogenic protein in multiple cancers, these studies suggest that inhibition of LEPR may be a promising therapeutic approach to inhibit NANOG and thereby neutralize CSC functions.