Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Stephen Meltzer x
Clear All Modify Search
Free access

Rachana Agarwal, Zhe Jin, Jian Yang, Yuriko Mori, Jee Hoon Song, Sahil Kumar, Masato Sato, Yulan Cheng, Alexandru V Olaru, John M Abraham, Amit Verma and Stephen J Meltzer

Restricted access

Zhe Wang, Ke Ma, Steffie Pitts, Yulan Cheng, Xi Liu, Xiquan Ke, Samuel Kovaka, Hassan Ashktorab, Duane T Smoot, Michael Schatz, Zhirong Wang and Stephen J Meltzer

Circular RNAs (circRNAs) are a new class of RNA involved in multiple human malignancies. However, limited information exists regarding the involvement of circRNAs in gastric carcinoma (GC). Therefore, we sought to identify novel circRNAs, their functions and mechanisms in gastric carcinogenesis. We analyzed next-generation RNA sequencing data from GC tissues and cell lines, identifying 75,201 candidate circRNAs. Among these, we focused on one novel circRNA, circNF1, which was upregulated in GC tissues and cell lines. Loss- and gain-of-function studies demonstrated that circNF1 significantly promotes cell proliferation. Furthermore, luciferase reporter assays showed that circNF1 binds to miR-16, thereby derepressing its downstream target mRNAs, MAP7 and AKT3. Targeted silencing or overexpression of circNF1 had no effect on levels of its linear RNA counterpart, NF1. Taken together, these results suggest that circNF1 acts as a novel oncogenic circRNA in GC by functioning as a miR-16 sponge.

Free access

Yuriko Mori, Alexandru V Olaru, Yulan Cheng, Rachana Agarwal, Jian Yang, Delgermaa Luvsanjav, Wayne Yu, Florin M Selaru, Susan Hutfless, Mark Lazarev, John H Kwon, Steven R Brant, Michael R Marohn, David F Hutcheon, Mark D Duncan, Ajay Goel and Stephen J Meltzer

DNA hypermethylation is a common epigenetic abnormality in colorectal cancers (CRCs) and a promising class of CRC screening biomarkers. We conducted a genome-wide search for novel neoplasia-specific hypermethylation events in the colon. We applied methylation microarray analysis to identify loci hypermethylated in 17 primary CRCs relative to eight non-neoplastic colonic mucosae (NCs) from neoplasia-free subjects. These CRC-associated hypermethylation events were then individually evaluated for their ability to discriminate neoplastic from non-neoplastic cases, based on real-time quantitative methylation-specific PCR (qMSP) assays in 113 colonic tissues: 51 CRCs, nine adenomas, 19 NCs from CRC patients (CRC–NCs), and 34 NCs from neoplasia-free subjects (control NCs). A strict microarray data filtering identified 169 candidate CRC-associated hypermethylation events. Fourteen of these 169 loci were evaluated using qMSP assays. Ten of these 14 methylation events significantly distinguished CRCs from age-matched control NCs (P<0.05 by receiver operator characteristic curve analysis); methylation of visual system homeobox 2 (VSX2) achieved the highest discriminative accuracy (83.3% sensitivity and 92.3% specificity, P<1×10−6), followed by BEN domain containing 4 (BEND4), neuronal pentraxin I (NPTX1), ALX homeobox 3 (ALX3), miR-34b, glucagon-like peptide 1 receptor (GLP1R), BTG4, homer homolog 2 (HOMER2), zinc finger protein 583 (ZNF583), and gap junction protein, gamma 1 (GJC1). Adenomas were significantly discriminated from control NCs by hypermethylation of VSX2, BEND4, NPTX1, miR-34b, GLP1R, and HOMER2 (P<0.05). CRC–NCs were significantly distinguished from control NCs by methylation of ALX3 (P<1×10−4). In conclusion, systematic methylome-wide analysis has identified ten novel methylation events in neoplastic and non-neoplastic colonic mucosae from CRC patients. These potential biomarkers significantly discriminate CRC patients from controls. Thus, they merit further evaluation in stool- and circulating DNA-based CRC detection studies.