Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Tessa Brabander x
  • All content x
Clear All Modify Search
Free access

Tessa Brabander, Julie Nonnekens, and Johannes Hofland

Peptide receptor radionuclide therapy (PRRT) with [177Lu]Lu-DOTA-[Tyr3]octreotate has been successfully developed in the last decades for the treatment of neuroendocrine neoplasms. However, different methods to improve the objective response rate and survival are under investigation. This includes changes of the radioligand, dosimetry and combination therapy with different agents, such as radiosensitisers. Hofving et al. recently reported, in the April 2019 issue of Endocrine-Related Cancer, the use of heat-shock protein 90 (Hsp90) modulation to augment radiation effects as a new promising target for radiosensitisation. In this commentary, new developments in the field of PRRT are discussed, placing these new findings about Hsp90 inhibitors into context.

Free access

Tessa Brabander, Wouter A van der Zwan, Jaap J M Teunissen, Boen L R Kam, Wouter W de Herder, Richard A Feelders, Eric P Krenning, and Dik J Kwekkeboom

Peptide receptor radionuclide therapy (PRRT) with [177Lu-DOTA0,Tyr3]octreotate (177Lu-DOTATATE) is a treatment with good results in patients with metastatic gastroenteropancreatic neuroendocrine tumours (GEPNETs). However, there are some pitfalls that should be taken into consideration when evaluating the treatment response after PRRT. 354 Dutch patients with GEPNETs who were treated with 177Lu-DOTATATE between March 2000 and December 2011 were retrospectively selected. Liver function parameters and chromogranin A were measured before each therapy and in follow-up. Anatomical imaging was performed before therapy and in follow-up. An increase in aminotransferases by ≥20% compared to baseline was observed in 83 of 351 patients (24%). In patients with an objective response (OR) and stable disease (SD) this increase was observed in 71/297 (24%) and in patients with progressive disease (PD) it was observed in 12/54 patients (22%). An increase in chromogranin A by ≥20% compared to baseline was observed in 76 patients (29%). This was present in 34% of patients who eventually had PD and 27% of patients who had OR/SD. In 70% of patients this tumour marker returned to baseline levels after therapy. An increase in liver enzymes and chromogranin A is not uncommon after PRRT. In the vast majority of patients this will resolve in follow-up. Clinicians should be aware that these changes may occur due to radiation-induced inflammation or disease progression and that repeated measurements over time are necessary to differentiate between the two.

Restricted access

Julie Refardt, Wouter T Zandee, Tessa Brabander, Richard A Feelders, Gaston J H Franssen, Leo J Hofland, Emanuel Christ, Wouter W de Herder, and Johannes Hofland

Sufficient expression of somatostatin receptor (SSTR) in well-differentiated neuroendocrine tumors (NETs) is crucial for treatment with somatostatin analogs (SSAs) and peptide receptor radionuclide therapy (PRRT) using radiolabeled SSAs. Impaired prognosis has been described for SSTR-negative NET patients; however, studies comparing matched SSTR-positive and -negative subjects who have not received PRRT are missing. This retrospective analysis of two prospectively maintained NET databases aimed to compare matched metastatic grade 1 or 2 SSTR-positive and –negative NET patients. SSTR-negativity was defined as having insufficient tumor uptake on diagnostic SSTR imaging. Patients that underwent PRRT were excluded. Seventy-seven SSTR-negative and 248 SSTR-positive grade 1–2 NET patients were included. Median overall survival rates were significantly lower for SSTR-negative compared to SSTR-positive NET patients (53 months vs 131 months; P < 0.001). To adjust for possible confounding by age, gender, grade and site of origin, 69 SSTR-negative NET patients were propensity score matched to 69 SSTR-positive NET patients. Group characteristics were similar, with the exception of SSTR-negative patients receiving more often chemotherapy and targeted treatment. The inferior survival outcome of SSTR-negative compared to SSTR-positive NET patients persisted with a median overall survival of 38 months vs 131 months (P = 0.012). This relationship upheld when correcting for the main influencing factors of having a higher grade tumor or receiving surgery in a multivariate Cox regression analysis. In conclusion, we showed that propensity score-matched SSTR-negative NET patients continue to have a worse prognosis compared to SSTR-positive NET patients despite receiving more aggressive treatment. Differences in tumor biology likely underlie this survival deficit.