Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Vasyl Vasko x
Clear All Modify Search
Free access

Yevgeniya Kushchayeva, Kirk Jensen, Kenneth D Burman and Vasyl Vasko

Repositioning of established non-cancer pharmacotherapeutic agents with well-known activity and side-effect profiles is a promising avenue for the development of new treatment modalities for multiple cancer types. We have analyzed some of the medications with mechanism of action that may have relevance to thyroid cancer (TC). Experimental in vitro and in vivo evidences, as well as results of clinical studies, have indicated that molecular targets for medications currently available for the treatment of mood disorders, sexually transmitted diseases, metabolic disorders, and diabetes may be active and relevant in TC. For instance, the derivatives of cannabis and an anti-diabetic agent, metformin, both are able to inhibit ERK, which is commonly activated in TC cells. We present here several examples of well-known medications that have the potential to become new therapeutics for patients with TC. Repositioning of established medications for the treatment of TC could broaden the scope of current therapeutic strategies. These diverse treatment choices could allow physicians to provide an individualized approach to optimize treatment for patients with TC.

Free access

Kirk Jensen, Aneeta Patel, Joanna Klubo-Gwiezdzinska, Andrew Bauer and Vasyl Vasko

Resistance to anoikis (matrix deprivation-induced apoptosis) is a critical component of the metastatic cascade. Molecular mechanisms underlying resistance to anoikis have not been reported in thyroid cancer cells. For an in vitro model of anoikis, we cultured follicular, papillary, and anaplastic thyroid cancer cell lines on poly-HEMA-treated low-adherent plates. We also performed immunohistochemical analysis of human cancer cells that had infiltrated blood and/or lymphatic vessels. Matrix deprivation was associated with establishment of contacts between floating thyroid cancer cells and formation of multi-cellular spheroids. This process was associated with activation of gap junctional transfer. Increased expression of the gap junction molecule Connexin43 was found in papillary and anaplastic cancer cells forming spheroids. All non-adherent cancer cells showed a lower proliferation rate compared with adherent cells but were more resistant to serum deprivation. AKT was constitutively activated in cancer cells forming spheroids. Inhibition of gap junctional transfer through Connexin43 silencing, or by treatment with the gap junction disruptor carbenoxolone, resulted in loss of pAKT and induction of apoptosis in a cell-type-specific manner. In human thyroid tissue, cancer cells that had infiltrated blood vessels showed morphological similarity to cancer cells forming spheroids in vitro. Intra-vascular cancer cells demonstrated prominent AKT activation in papillary and follicular cancers. Increased Connexin43 immunoreactivity was observed only in intra-vascular papillary cancer cells. Our data demonstrate that establishment of inter-cellular communication contributes to thyroid cancer cell resistance to anoikis. These findings suggest that disruption of gap junctional transfer could represent a potential therapeutic strategy for prevention of metastases.

Free access

Kirk Jensen, Athanasios Bikas, Aneeta Patel, Yevgeniya Kushchayeva, John Costello, Dennis McDaniel, Kenneth Burman and Vasyl Vasko

The HIV protease inhibitor Nelfinavir (NFV) inhibits PI3K/AKT and MAPK/ERK signaling pathways, emerging targets in thyroid cancers. We examined the effects of NFV on cancer cells that derived from follicular (FTC), papillary (PTC) and anaplastic (ATC) thyroid cancers. NFV (1–20 µM) was tested in FTC133, BCPAP and SW1736 cell lines. The effects of NFV on cell proliferation were determined in vitro using real-time microscopy and by flow cytometry. DNA damage, apoptotic cell death and expression of molecular markers of epithelial–mesenchymal transition (EMT) were determined by Western blot and real-time PCR. Real-time imaging demonstrated that NFV (10 µM) increased the time required for the cell passage through the phases of cell cycle and induced DNA fragmentation. Growth inhibitory effects of NFV were associated with the accumulation of cells in G0/G1 phase, downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). NFV also induced the expression of γH2AX and p53BP1 indicating DNA damage. Treatment with NFV (20 µM) resulted in caspase-3 cleavage in all examined cells. NFV (20 µM) decreased the levels of total and p-AKT in PTEN-deficient FTC133 cells. NFV had no significant effects on total ERK and p-ERK in BRAF-positive BCPAP and SW1736 cells. NFV had no effects on the expression of EMT markers (Twist, Vimentin, E- and N-Cadherin), but inhibited the migration and decreased the abilities of thyroid cancer cells to survive in non-adherent conditions. We conclude that NFV inhibits proliferation and induces DNA damage in thyroid cancer cell lines. Our in vitro data suggest that NFV has a potential to become a new thyroid cancer therapeutic agent.

Free access

Joanna Klubo-Gwiezdzinska, Kirk Jensen, John Costello, Aneeta Patel, Victoria Hoperia, Andrew Bauer, Kenneth D Burman, Leonard Wartofsky and Vasyl Vasko

Medullary thyroid cancer (MTC) is associated with activation of mammalian target of rapamycin (mTOR) signaling pathways. Recent studies showed that the antidiabetic agent metformin decreases proliferation of cancer cells through 5′-AMP-activated protein kinase (AMPK)-dependent inhibition of mTOR. In the current study, we assessed the effect of metformin on MTC cells. For this purpose, we determined growth, viability, migration, and resistance to anoikis assays using two MTC-derived cell lines (TT and MZ-CRC-1). Expressions of molecular targets of metformin were examined in MTC cell lines and in 14 human MTC tissue samples. We found that metformin inhibited growth and decreased expression of cyclin D1 in MTC cells. Treatment with metformin was associated with inhibition of mTOR/p70S6K/pS6 signaling and downregulation of pERK in both TT and MZ-CRC-1 cells. Metformin had no significant effects on pAKT in the cell lines examined. Metformin-inducible AMPK activation was noted only in TT cells. Treatment with AMPK inhibitor (compound C) or AMPK silencing did not prevent growth inhibitory effects of metformin in TT cells. Metformin had no effect on MTC cell migration but reduced the ability of cells to form multicellular spheroids in nonadherent conditions. Immunostaining of human MTC showed over-expression of cyclin D1 in all tumors compared with corresponding normal tissue. Activation of mTOR/p70S6K was detected in 8/14 (57.1%) examined tumors. Together, these findings indicate that growth inhibitory effects in MTC cells are associated with downregulation of both mTOR/6SK and pERK signaling pathways. Expression of metformin's molecular targets in human MTC cells suggests its potential utility for the treatment of MTC in patients.

Free access

Samantha K McCarty, Motoyasu Saji, Xiaoli Zhang, David Jarjoura, Alfredo Fusco, Vasyl V Vasko and Matthew D Ringel

p21-activated kinases (PAKs) are a family of serine/threonine kinases that regulate cytoskeletal dynamics and cell motility. PAKs are subdivided into group I (PAKs 1–3) and group II (PAKs 4–6) on the basis of structural and functional characteristics. Based on prior gene expression data that predicted enhanced PAK signaling in the invasive fronts of aggressive papillary thyroid cancers (PTCs), we hypothesized that PAKs functionally regulate thyroid cancer cell motility and are activated in PTC invasive fronts. We examined PAK isoform expression in six human thyroid cancer cell lines (BCPAP, KTC1, TPC1, FTC133, C643, and SW1746) by quantitative reverse transcription-PCR and western blot. All cell lines expressed PAKs 1–4 and PAK6 mRNA and PAKs 1–4 protein; PAK6 protein was variably expressed. Samples from normal and malignant thyroid tissues also expressed PAKs 1–4 and PAK6 mRNA; transfection with the group I (PAKs 1–3) PAK-specific p21 inhibitory domain molecular inhibitor reduced transwell filter migration by ∼50% without altering viability in all cell lines (P<0.05). BCPAP and FTC133 cells were transfected with PAK1, PAK2, or PAK3-specific small interfering RNA (siRNA); only PAK1 siRNA reduced migration significantly for both cell lines. Immunohistochemical analysis of seven invasive PTCs demonstrated an increase in PAK1 and pPAK immunoactivity in the invasive fronts versus the tumor center. In conclusion, PAK isoforms are expressed in human thyroid tissues and cell lines. PAK1 regulates thyroid cancer cell motility, and PAK1 and pPAK levels are increased in PTC invasive fronts. These data implicate PAKs as regulators of thyroid cancer invasion.

Free access

Athanasios Bikas, Kirk Jensen, Aneeta Patel, John Costello Jr, Dennis McDaniel, Joanna Klubo-Gwiezdzinska, Olexander Larin, Victoria Hoperia, Kenneth D Burman, Lisa Boyle, Leonard Wartofsky and Vasyl Vasko

Metformin inhibits thyroid cancer cell growth. We sought to determine if variable glucose concentrations in medium alter the anti-cancer efficacy of metformin. Thyroid cancer cells (FTC133 and BCPAP) were cultured in high-glucose (20 mM) and low-glucose (5 mM) medium before treatment with metformin. Cell viability and apoptosis assays were performed. Expression of glycolytic genes was examined by real-time PCR, western blot, and immunostaining. Metformin inhibited cellular proliferation in high-glucose medium and induced cell death in low-glucose medium. In low-, but not in high-glucose medium, metformin induced endoplasmic reticulum stress, autophagy, and oncosis. At micromolar concentrations, metformin induced phosphorylation of AMP-activated protein kinase and blocked p-pS6 in low-glucose medium. Metformin increased the rate of glucose consumption from the medium and prompted medium acidification. Medium supplementation with glucose reversed metformin-inducible morphological changes. Treatment with an inhibitor of glycolysis (2-deoxy-d-glucose (2-DG)) increased thyroid cancer cell sensitivity to metformin. The combination of 2-DG with metformin led to cell death. Thyroid cancer cell lines were characterized by over-expression of glycolytic genes, and metformin decreased the protein level of pyruvate kinase muscle 2 (PKM2). PKM2 expression was detected in recurrent thyroid cancer tissue samples. In conclusion, we have demonstrated that the glucose concentration in the cellular milieu is a factor modulating metformin's anti-cancer activity. These data suggest that the combination of metformin with inhibitors of glycolysis could represent a new strategy for the treatment of thyroid cancer.