Search Results

You are looking at 1 - 10 of 14 items for

  • Author: Wayne D Tilley x
Clear All Modify Search
Free access

Luke A Selth, Wayne D Tilley and Lisa M Butler

The realization that microRNAs (miRNAs) are frequently deregulated in malignancy has had a major impact on cancer research. In particular, the recent finding that highly stable forms of miRNAs can be accurately measured in body fluids, including blood, has generated considerable excitement. Here, we discuss the potential of blood-based circulating miRNAs as diagnostic, prognostic, and predictive biomarkers of prostate cancer. We also describe practical considerations that may influence identification and/or measurement of miRNA biomarkers in the circulation. Finally, evidence is prevented for the emerging concept that circulating miRNAs are actively released by their cells of origin and can modulate gene expression at distal sites. These mobile miRNAs, which we term ‘hormomirs’ because of their hormone-like characteristics, could act as local or long-range signals to maintain normal homeostasis or influence the development and progression of diseases such as cancer.

Free access

Elgene Lim, Gerard Tarulli, Neil Portman, Theresa E Hickey, Wayne D Tilley and Carlo Palmieri

The estrogen receptor-α (herein called ER) is a nuclear sex steroid receptor (SSR) that is expressed in approximately 75% of breast cancers. Therapies that modulate ER action have substantially improved the survival of patients with ER-positive breast cancer, but resistance to treatment still remains a major clinical problem. Treating resistant breast cancer requires co-targeting of ER and alternate signalling pathways that contribute to resistance to improve the efficacy and benefit of currently available treatments. Emerging data have shown that other SSRs may regulate the sites at which ER binds to DNA in ways that can powerfully suppress the oncogenic activity of ER in breast cancer. This includes the progesterone receptor (PR) that was recently shown to reprogram the ER DNA binding landscape towards genes associated with a favourable outcome. Another attractive candidate is the androgen receptor (AR), which is expressed in the majority of breast cancers and inhibits growth of the normal breast and ER-positive tumours when activated by ligand. These findings have led to the initiation of breast cancer clinical trials evaluating therapies that selectively harness the ability of SSRs to ‘push’ ER towards anti-tumorigenic activity. Our review will focus on the established and emerging clinical evidence for activating PR or AR in ER-positive breast cancer to inhibit the tumour growth-promoting functions of ER.

Free access

Howard I Scher, Grant Buchanan, William Gerald, Lisa M Butler and Wayne D Tilley

The categorization of prostate cancers that are progressing after castration as ‘hormone-refractory’ evolved from the clinical observation that surgical or medical castration (i.e. androgen ablation therapy; AAT) is not curative and, despite an initial response, virtually all tumors eventually regrow. Successful AAT is contingent on the dependence of prostate cancer cells for androgen signaling through an intracellular mediator, the androgen receptor (AR) for survival. Current preclinical and clinical data imply that the AR is expressed and continues to mediate androgen signaling after failure of AAT. As AAT does not completely eliminate circulating androgens, sufficient concentrations of dihydrotestosterone may accumulate in tumor cells to maintain AR signaling, especially in the context of upregulated receptor levels or increased sensitivity of the AR for activation. In addition, ligands of non-testicular origin or ligand-independent activation can contribute to continued AR signaling. In many cases, therefore, from the perspective of the AR, a ‘hormone-refractory’ classification after failure of AAT is inappropriate. Classifying prostate tumors that progress after AAT as ‘castration-resistant’ may be more relevant. Clinical responses to second- and third-line hormonal therapies suggest that the mechanisms of AR activation are in part a function of previously administered AAT. Accordingly, the increasing trend to utilize AAT earlier in the course of the clinical disease may have a greater influence on the genotype and phenotype of the resistant tumor. In this article, we detail strategies to inhibit the growth of prostate cancer cells that specifically target the AR in addition to those practiced traditionally that indirectly target the receptor by reducing the amount of circulating ligand. We propose that treatment regimes combining AAT with direct AR targeting strategies may provide a more complete blockade of androgen signaling, thereby preventing or significantly delaying the emergence of treatment-resistant disease.

Free access

Gerard A Tarulli, Lisa M Butler, Wayne D Tilley and Theresa E Hickey

While it has been known for decades that androgen hormones influence normal breast development and breast carcinogenesis, the underlying mechanisms have only been recently elucidated. To date, most studies have focused on androgen action in breast cancer cell lines, yet these studies represent artificial systems that often do not faithfully replicate/recapitulate the cellular, molecular and hormonal environments of breast tumours in vivo. It is critical to have a better understanding of how androgens act in the normal mammary gland as well as in in vivo systems that maintain a relevant tumour microenvironment to gain insights into the role of androgens in the modulation of breast cancer development. This in turn will facilitate application of androgen-modulation therapy in breast cancer. This is particularly relevant as current clinical trials focus on inhibiting androgen action as breast cancer therapy but, depending on the steroid receptor profile of the tumour, certain individuals may be better served by selectively stimulating androgen action. Androgen receptor (AR) protein is primarily expressed by the hormone-sensing compartment of normal breast epithelium, commonly referred to as oestrogen receptor alpha (ERa (ESR1))-positive breast epithelial cells, which also express progesterone receptors (PRs) and prolactin receptors and exert powerful developmental influences on adjacent breast epithelial cells. Recent lineage-tracing studies, particularly those focussed on NOTCH signalling, and genetic analysis of cancer risk in the normal breast highlight how signalling via the hormone-sensing compartment can influence normal breast development and breast cancer susceptibility. This provides an impetus to focus on the relationship between androgens, AR and NOTCH signalling and the crosstalk between ERa and PR signalling in the hormone-sensing component of breast epithelium in order to unravel the mechanisms behind the ability of androgens to modulate breast cancer initiation and growth.

Free access

Rayzel C Fernandes, Theresa E Hickey, Wayne D Tilley and Luke A Selth

The androgen receptor (AR) is a ligand-activated transcription factor that drives prostate cancer. Since therapies that target the AR are the mainstay treatment for men with metastatic disease, it is essential to understand the molecular mechanisms underlying oncogenic AR signaling in the prostate. miRNAs are small, non-coding regulators of gene expression that play a key role in prostate cancer and are increasingly recognized as targets or modulators of the AR signaling axis. In this review, we examine the regulation of AR signaling by miRNAs and vice versa and discuss how this interplay influences prostate cancer growth, metastasis and resistance to therapy. Finally, we explore the potential clinical applications of miRNAs implicated in the regulation of AR signaling in this prevalent hormone-driven disease.

Free access

Isabel Coutinho, Tanya K Day, Wayne D Tilley and Luke A Selth

The androgen receptor (AR) signaling axis drives all stages of prostate cancer, including the lethal, drug-resistant form of the disease termed castration-resistant prostate cancer (CRPC), which arises after failure of androgen deprivation therapy (ADT). Persistent AR activity in spite of ADT and the second-generation AR-targeting agents enzalutamide and abiraterone is achieved in many cases by direct alterations to the AR signaling axis. Herein, we provide a detailed description of how such alterations contribute to the development and progression of CRPC. Aspects of this broad and ever-evolving field specifically addressed in this review include: the etiology and significance of increased AR expression; the frequency and role of gain-of-function mutations in the AR gene; the function of constitutively active, truncated forms of the AR termed AR variants and the clinical relevance of alterations to the activity and expression of AR coregulators. Additionally, we examine the novel therapeutic strategies to inhibit these classes of therapy resistance mechanisms, with an emphasis on emerging agents that act in a manner distinct from the current ligand-centric approaches. Throughout, we discuss how the central role of AR in prostate cancer and the constant evolution of the AR signaling axis during disease progression represent archetypes of two key concepts in oncology, oncogene addiction and therapy-mediated selection pressure.

Free access

Keely M McNamara, Nicole L Moore, Theresa E Hickey, Hironobu Sasano and Wayne D Tilley

While the clinical benefit of androgen-based therapeutics in breast cancer has been known since the 1940s, we have only recently begun to fully understand the mechanisms of androgen action in breast cancer. Androgen signalling pathways can have either beneficial or deleterious effects in breast cancer depending on the breast cancer subtype and intracellular context. This review discusses our current knowledge of androgen signalling in breast cancer, including the relationship between serum androgens and breast cancer risk, the prognostic significance of androgen receptor (AR) expression in different breast cancer subtypes and the downstream molecular pathways mediating androgen action in breast cancer cells. Intracrine androgen metabolism has also been discussed and proposed as a potential mechanism that may explain some of the reported differences regarding dichotomous androgen actions in breast cancers. A better understanding of AR signalling in this disease is critical given the current resurgence in interest in utilising contemporary AR-directed therapies for breast cancer and the need for biomarkers that will accurately predict clinical response.

Free access

Adam W Nelson, Wayne D Tilley, David E Neal and Jason S Carroll

Prostate cancer is the commonest, non-cutaneous cancer in men. At present, there is no cure for the advanced, castration-resistant form of the disease. Estrogen has been shown to be important in prostate carcinogenesis, with evidence resulting from epidemiological, cancer cell line, human tissue and animal studies. The prostate expresses both estrogen receptor alpha (ERA) and estrogen receptor beta (ERB). Most evidence suggests that ERA mediates the harmful effects of estrogen in the prostate, whereas ERB is tumour suppressive, but trials of ERB-selective agents have not translated into improved clinical outcomes. The role of ERB in the prostate remains unclear and there is increasing evidence that isoforms of ERB may be oncogenic. Detailed study of ERB and ERB isoforms in the prostate is required to establish their cell-specific roles, in order to determine if therapies can be directed towards ERB-dependent pathways. In this review, we summarise evidence on the role of ERB in prostate cancer and highlight areas for future research.

Free access

Margaret M Centenera, Sarah L Carter, Joanna L Gillis, Deborah L Marrocco-Tallarigo, Randall H Grose, Wayne D Tilley and Lisa M Butler

Persistent androgen receptor (AR) signaling in castration resistant prostate cancer (CRPC) underpins the urgent need for therapeutic strategies that better target this pathway. Combining classes of agents that target different components of AR signaling has the potential to delay resistance and improve patient outcomes. Many oncoproteins, including the AR, rely on the molecular chaperone heat shock protein 90 (Hsp90) for functional maturation and stability. In this study, enhanced anti-proliferative activity of the Hsp90 inhibitors 17-allylamino-demethoxygeldanamycin (17-AAG) and AUY922 in androgen-sensitive and CRPC cells was achieved when the agents were used in combination with AR antagonists bicalutamide or enzalutamide. Moreover, significant caspase-dependent cell death was achieved using sub-optimal agent doses that individually have no effect. Expression profiling demonstrated regulation of a broadened set of AR target genes with combined 17-AAG and bicalutamide compared with the respective single agent treatments. This enhanced inhibition of AR signaling was accompanied by impaired chromatin binding and nuclear localization of the AR. Importantly, expression of the AR variant AR-V7 that is implicated in resistance to AR antagonists was not induced by combination treatment. Likewise, the heat shock response that is typically elicited with therapeutic doses of Hsp90 inhibitors, and is a potential mediator of resistance to these agents, was significantly reduced by combination treatment. In summary, the co-targeting strategy in this study more effectively inhibits AR signaling than targeting AR or HSP90 alone and prevents induction of key resistance mechanisms in prostate cancer cells. These findings merit further evaluation of this therapeutic strategy to prevent CRPC growth.