Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Wei He x
Clear All Modify Search
Free access

Wu Guojun, Guo Wei, Ouyan Kedong, He Yi, Xie Yanfei, Chen Qingmei, Zhang Yankai, Wu Jie, Fan Hao, Li Taiming, Liu Jingjing and Cao Rongyue

Gastrin-releasing peptide (GRP), a bombesin-like peptide, is an autocrine growth factor that can stimulate the growth of various cancer cells. We developed a novel protein vaccine HSP65-(GRP-10)6 (HG6) that consists of six copies of a 10-amino acid residue epitope of GRP C-terminal fragment carried by mycobacterial 65 kDa HSP65 and then immunized mice via subcutaneous injection. Strong humoral and cell-mediated immune responses were induced. High titer of anti-GRP antibodies was detected in immunized mice sera by ELISA and verified by Western blot analysis. Activity of CD4+T lymphocytes, especially high levels of interferon (INF)-γ, were developed in mice immunized with HG6 when compared with HSP65 or PBS. We found that immunogene tumor therapy with a vaccine based on GRP was effective at both protective and therapeutic antitumor immunity in breast tumor models in mice. The purified GRP monoclonal antibody (McAb) was proved to be potential in inhibiting EMT-6 tumor cell proliferation in vitro. The attenuation induced by active immune responses on tumor-induced angiogenesis was observed with an intradermal tumor model in mice. Taken together, we demonstrate for the first time that immune responses that are elicited by a novel chimeric protein vaccine targeting GRP can suppress the proliferation of breast tumor cell EMT-6 in mice, and it may be of importance in the further exploration of the applications of other autocrine growth factor identified in human and other animal in cancer therapy.

Open access

James Yao, Abhishek Garg, David Chen, Jaume Capdevila, Paul Engstrom, Rodney Pommier, Eric Van Cutsem, Simron Singh, Nicola Fazio, Wei He, Markus Riester, Parul Patel, Maurizio Voi, Michael Morrissey, Marianne Pavel and Matthew Helmut Kulke

Neuroendocrine tumors (NETs) have historically been subcategorized according to histologic features and the site of anatomic origin. Here, we characterize the genomic alterations in patients enrolled in three phase 3 clinical trials of NET of different anatomic origins and assess the potential correlation with clinical outcomes. Whole-exome and targeted panel sequencing was used to characterize 225 NET samples collected in the RADIANT series of clinical trials. Genomic profiling of NET was analyzed along with nongenomic biomarker data on the tumor grade and circulating chromogranin A (CgA) and neuron-specific enolase (NSE) levels from these patients enrolled in clinical trials. Our results highlight recurrent large-scale chromosomal alterations as a common theme among NET. Although the specific pattern of chromosomal alterations differed between tumor subtypes, the evidence for generalized chromosomal instability (CIN) was observed across all primary sites of NET. In pancreatic NET, although the P value was not significant, higher CIN suggests a trend toward longer survival (HR, 0.55, P = 0.077), whereas in the gastrointestinal NET, lower CIN was associated with longer survival (HR, 0.44, P = 0.0006). Our multivariate analyses demonstrated that when combined with other clinical data among patients with progressive advanced NETs, chromosomal level alteration adds important prognostic information. Large-scale CIN is a common feature of NET, and specific patterns of chromosomal gain and loss appeared to have independent prognostic value in NET subtypes. However, whether CIN in general has clinical significance in NET requires validation in larger patient cohort and warrants further mechanistic studies.