Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Xuesen Dong x
Clear All Modify Search
Restricted access

Zhi Long, Yinan Li, Yu Gan, Dongyu Zhao, Guangyu Wang, Ning Xie, Jessica M Lovnicki, Ladan Fazli, Qi Cao, Kaifu Chen and Xuesen Dong

Homeobox A10 (HOXA10) is an important transcription factor that regulates the development of the prostate gland. However, it remains unknown whether it modulates prostate cancer (PCa) progression into castrate-resistant stages. In this study, we have applied RNA in situ hybridization assays to demonstrate that downregulation of HOXA10 expression is associated with castrate-resistant PCa. These findings are supported by public RNA-seq data showing that reduced HOXA10 expression is correlated with poor patient survival. We show that HOXA10 suppresses PCa cell proliferation, anchorage colony formation and xenograft growth independent to androgens. Using AmpliSeq transcriptome sequencing, we have found that gene groups associated with lipid metabolism and androgen receptor (AR) signaling are enriched in the HOXA10 transcriptome. Furthermore, we demonstrate that HOXA10 suppresses the transcription of the fatty acid synthase (FASN) gene by forming a protein complex with AR and prevents AR recruitment to the FASN gene promoter. These results lead us to conclude that downregulation of HOXA10 gene expression may enhance lipogenesis to promote PCa cell growth and tumor progression to castrate-resistant stage.

Restricted access

Martin K Bakht, Iulian Derecichei, Yinan Li, Rosa-Maria Ferraiuolo, Mark Dunning, So Won Oh, Abdulkadir Hussein, Hyewon Youn, Keith F Stringer, Chang Wook Jeong, Gi Jeong Cheon, Cheol Kwak, Keon Wook Kang, Alastair D Lamb, Yuzhuo Wang, Xuesen Dong and Lisa A Porter

Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate adenocarcinoma (AdPC) cells and acts as a target for molecular imaging. However, some case reports indicate that PSMA-targeted imaging could be ineffectual for delineation of neuroendocrine (NE) prostate cancer (NEPC) lesions due to the suppression of the PSMA gene (FOLH1). These same reports suggest that targeting somatostatin receptor type 2 (SSTR2) could be an alternative diagnostic target for NEPC patients. This study evaluates the correlation between expression of FOLH1, NEPC marker genes and SSTR2. We evaluated the transcript abundance for FOLH1 and SSTR2 genes as well as NE markers across 909 tumors. A significant suppression of FOLH1 in NEPC patient samples and AdPC samples with high expression of NE marker genes was observed. We also investigated protein alterations of PSMA and SSTR2 in an NE-induced cell line derived by hormone depletion and lineage plasticity by loss of p53. PSMA is suppressed following NE induction and cellular plasticity in p53-deficient NEPC model. The PSMA-suppressed cells have more colony formation ability and resistance to enzalutamide treatment. Conversely, SSTR2 was only elevated following hormone depletion. In 18 NEPC patient-derived xenograft (PDX) models we find a significant suppression of FOLH1 and amplification of SSTR2 expression. Due to the observed FOLH1-supressed signature of NEPC, this study cautions on the reliability of using PMSA as a target for molecular imaging of NEPC. The observed elevation of SSTR2 in NEPC supports the possible ability of SSTR2-targeted imaging for follow-up imaging of low PSMA patients and monitoring for NEPC development.