Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Yazhuo Zhang x
  • Refine by access: All content x
Clear All Modify Search
Bin Li Department of Neurosurgery, Peking University People’s Hospital, Beijing, China

Search for other papers by Bin Li in
Google Scholar
PubMed
Close
,
Sida Zhao Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China

Search for other papers by Sida Zhao in
Google Scholar
PubMed
Close
,
Yiyuan Chen Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China

Search for other papers by Yiyuan Chen in
Google Scholar
PubMed
Close
,
Hua Gao Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China

Search for other papers by Hua Gao in
Google Scholar
PubMed
Close
,
Weiyan Xie Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China

Search for other papers by Weiyan Xie in
Google Scholar
PubMed
Close
,
Hongyun Wang Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China

Search for other papers by Hongyun Wang in
Google Scholar
PubMed
Close
,
Peng Zhao Department of Neurosurgical, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Search for other papers by Peng Zhao in
Google Scholar
PubMed
Close
,
Chuzhong Li Department of Neurosurgical, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Search for other papers by Chuzhong Li in
Google Scholar
PubMed
Close
, and
Yazhuo Zhang Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China

Search for other papers by Yazhuo Zhang in
Google Scholar
PubMed
Close

The clinical diagnosis and treatment of pituitary neuroendocrine tumors (PitNETs) that invade the cavernous sinus are fraught with difficulties and challenges. Exploring the biological characteristics involved in the occurrence and development of PitNETs that invade the cavernous sinus will help to elucidate the mechanism of cavernous sinus invasion. There are differences between intrasellar tumors (IST) and cavernous sinus-invasion tumors (CST) in ultramicrostructure, tumor microenvironment (TME), gene expression, and signaling pathways. The microvascular endothelial cell is increased in CST. The VEGFR signaling pathway, VEGF signaling pathway, and chemokine signaling pathway are activated in CST. HSPB1 is upregulated in CST and promotes cell proliferation, cell viability, and migration. HSPB1 promotes the release of VEGF from GT1-1 cells and activates the VEGF signaling pathway in bEnd.3 cells. HSPB1 promotes the migration of bEnd.3 cells to GT1-1 cells and promotes the formation of blood vessels of bEnd.3 cells. bEnd.3 cells can release CCL3 and CCL4 and promote the vitality, proliferation, and migration of GT1-1 cells. HSPB1 promotes the formation of blood vessels of bEnd.3 cells and ultimately leads to tumor growth in vivo. HSPB1 acts as a key gene for invasion of the cavernous sinus in PitNETs, remodeling TME by promoting the formation of blood vessels of brain microvascular endothelial cells. The synergistic effect of tumor cells and microvascular endothelial cells promotes tumor progression. The mechanism by which HSPB1 promotes tumor invasion by inducing angiogenesis in PitNETs may be a new target for the treatment of PitNETs invading the cavernous sinus.

Restricted access