Search Results
You are looking at 1 - 2 of 2 items for
- Author: Yingbin Ouyang x
- Refine by access: All content x
Search for other papers by James F Powers in
Google Scholar
PubMed
Search for other papers by Brent Cochran in
Google Scholar
PubMed
Search for other papers by James D Baleja in
Google Scholar
PubMed
Search for other papers by Hadley D Sikes in
Google Scholar
PubMed
Search for other papers by Andrew D Pattison in
Google Scholar
PubMed
Search for other papers by Xue Zhang in
Google Scholar
PubMed
Search for other papers by Inna Lomakin in
Google Scholar
PubMed
Search for other papers by Annette Shepard-Barry in
Google Scholar
PubMed
Search for other papers by Karel Pacak in
Google Scholar
PubMed
Search for other papers by Sun Jin Moon in
Google Scholar
PubMed
Search for other papers by Troy F Langford in
Google Scholar
PubMed
Search for other papers by Kassi Taylor Stein in
Google Scholar
PubMed
Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
Search for other papers by Richard W Tothill in
Google Scholar
PubMed
Search for other papers by Yingbin Ouyang in
Google Scholar
PubMed
Search for other papers by Arthur S Tischler in
Google Scholar
PubMed
Tumors caused by loss-of-function mutations in genes encoding TCA cycle enzymes have been recently discovered and are now of great interest. Mutations in succinate dehydrogenase (SDH) subunits cause pheochromocytoma/paraganglioma (PCPG) and syndromically associated tumors, which differ phenotypically and clinically from more common SDH-intact tumors of the same types. Consequences of SDH deficiency include rewired metabolism, pseudohypoxic signaling and altered redox balance. PCPG with SDHB mutations are particularly aggressive, and development of treatments has been hampered by lack of valid experimental models. Attempts to develop mouse models have been unsuccessful. Using a new strategy, we developed a xenograft and cell line model of SDH-deficient pheochromocytoma from rats with a heterozygous germline Sdhb mutation. The genome, transcriptome and metabolome of this model, called RS0, closely resemble those of SDHB-mutated human PCPGs, making it the most valid model now available. Strategies employed to develop RS0 may be broadly applicable to other SDH-deficient tumors.
Search for other papers by James F Powers in
Google Scholar
PubMed
Search for other papers by Brent Cochran in
Google Scholar
PubMed
Search for other papers by James D Baleja in
Google Scholar
PubMed
Search for other papers by Hadley D Sikes in
Google Scholar
PubMed
Search for other papers by Andrew D Pattison in
Google Scholar
PubMed
Search for other papers by Xue Zhang in
Google Scholar
PubMed
Search for other papers by Inna Lomakin in
Google Scholar
PubMed
Search for other papers by Annette Shepard-Barry in
Google Scholar
PubMed
Search for other papers by Karel Pacak in
Google Scholar
PubMed
Search for other papers by Sun Jin Moon in
Google Scholar
PubMed
Search for other papers by Troy F Langford in
Google Scholar
PubMed
Search for other papers by Kassi Taylor Stein in
Google Scholar
PubMed
Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
Search for other papers by Richard W Tothill in
Google Scholar
PubMed
Search for other papers by Yingbin Ouyang in
Google Scholar
PubMed
Search for other papers by Arthur S Tischler in
Google Scholar
PubMed