Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Yu-Li Chen x
Clear All Modify Search
Free access

Yu-Xia Chen, Yan Wang, Chen-Chun Fu, Fei Diao, Liang-Nian Song, Zong-Bin Li, Rui Yang and Jian Lu

Glucocorticoids (GCs) are widely used as co-medication in the therapy of solid malignant tumors to relieve some of the side effects of chemotherapeutic drugs. However, recent studies have shown that GCs could render cancer cells more resistant to cytotoxic drug-induced apoptosis, but the mechanism is largely unknown. In the present study, we found that the treatment of human ovarian cancer cell lines HO-8910 and SKOV3 with synthetic GCs dexamethasone (Dex) significantly increased their adhesion to extracellular matrix (ECM) and their resistance to apoptosis induced by cytotoxic drugs cisplatin and paclitaxel. Dex also increased the protein levels of adhesion molecules integrins β1, α4, and α5 in HO-8910 cells. The neutralizing antibody against integrin β1 prevented Dex-induced adhesion and significantly abrogated the protective effect of Dex toward cytotoxic agents. We further found that transforming growth factor-β1 (TGF-β1) alone not only increased cell adhesion and cell survival of HO-8910 cells in the presence of cisplatin, but also had synergistic pro-adhesion and pro-survival effects with Dex. Moreover, TGF-β1-neutralizing antibody that could block TGF-β1-induced cell adhesion and apoptosis resistance markedly abrogated the synergistic pro-adhesion and pro-survival effects of Dex and TGF-β1. Finally, we further demonstrated that Dex could up-regulate the expression of TGF-β receptor type II and enhance the responsiveness of cells to TGF-β1. In conclusion, our results indicate that increased adhesion to ECM through the enhancement of integrin β1 signaling and TGF-β1 signaling plays an important role in chemoresistance induced by GCs in ovarian cancer cells.

Free access

Yu-Li Chen, Cheng-Yang Chou, Ming-Cheng Chang, Han-Wei Lin, Ching-Ting Huang, Shu-Feng Hsieh, Chi-An Chen and Wen-Fang Cheng

Aside from tumor cells, ovarian cancer-related ascites contains the immune components. The aim of this study was to evaluate whether a combination of clinical and immunological parameters can predict survival in patients with ovarian cancer. Ascites specimens and medical records from 144 ovarian cancer patients at our hospital were used as the derivation group to select target clinical and immunological factors to generate a risk-scoring system to predict patient survival. Eighty-two cases from another hospital were used as the validation group to evaluate this system. The surgical status and expression levels of interleukin 17a (IL17a) and IL21 in ascites were selected for the risk-scoring system in the derivation group. The areas under the receiver operating characteristic (AUROC) curves of the overall score for disease-free survival (DFS) of the ovarian cancer patients were 0.84 in the derivation group, 0.85 in the validation group, and 0.84 for all the patients. The AUROC curves of the overall score for overall survival (OS) of cases were 0.78 in the derivation group, 0.76 in the validation group, and 0.76 for all the studied patients. Good correlations between overall risk score and survival of the ovarian cancer patients were demonstrated by sub-grouping all participants into four groups (P for trend <0.001 for DFS and OS). Therefore, acombination of clinical and immunological parameters can provide a practical scoring system to predict the survival of patients with ovarian carcinoma. IL17a and IL21 can potentially be used as prognostic and therapeutic biomarkers.

Restricted access

Han-Wei Lin, Ying-Cheng Chiang, Nai-Yun Sun, Yu-Li Chen, Chi-Fang Chang, Yi-Jou Tai, Chi-An Chen and Wen-Fang Cheng

The role of chitinase-3-like protein 1 (CHI3L1) in ovarian cancer and the possible mechanisms were elucidated. CHI3L1 is a secreted glycoprotein and associated with inflammation, fibrosis, asthma, extracellular tissue remodeling and solid tumors. Our previous study showed CHI3L1 could be a potential prognostic biomarker for epithelial ovarian cancer and could protect cancer cells from apoptosis. Therefore, clinical data and quantitation of CHI3L1 of ovarian cancer patients, tumor spheroid formation, side-population assays, Aldefluor and apoptotic assays, ELISA, RT-PCR, immunoblotting and animal experiments were performed in two ovarian cancer cells lines, OVCAR3 and CA5171, and their CHI3L1-overexpressing and -knockdown transfectants. High expression of CHI3L1 was associated with poor outcome and chemoresistance in ovarian cancer patients. The mRNA expression of CHI3L1 in CA5171 ovarian cancer stem-like cells was 3-fold higher than in CA5171 parental cells. CHI3L1 promoted the properties of ovarian cancer stem-like cells including generating more and larger tumor spheroids and a higher percentage of ALDH+ in tumor cells and promoting resistance to cytotoxic drug-induced apoptosis. CHI3L1 could induce both the Akt (essential) and Erk signaling pathways, and then enhance expression of β-catenin followed by SOX2, and finally promote tumor spheroid formation and other properties of ovarian cancer stem-like cells. OVCAR3 CHI3L1-overexpressing transfectants were more tumorigenic in vivo, whereas CA5171 CHI3L1-knockdown transfectants were not tumorigenic in vivo. CHI3L1 critically enhances the properties of ovarian cancer stem-like cells. CHI3L1 or CHI3L1-regulated signaling pathways and molecules could be potential therapeutic targets in ovarian cancer.

Free access

Cheng-Chieh Lin, Chia-Ing Li, Chiu-Shong Liu, Wen-Yuan Lin, Ching-Chu Chen, Sing-Yu Yang, Cheng-Chun Lee and Tsai-Chung Li

The study aims to examine whether the annual variations in fasting plasma glucose (FPG) measurements, represented by the coefficient of variation (CV), predict cancer incidence and mortality in the subsequent years independent of traditional risk factors of type 2 diabetic patients. A computerized database of patients with type 2 diabetes of 30 years old and older (n=4805) enrolled in the Diabetes Care Management Program of a medical center before 2006 was analyzed using a time-dependent Cox's proportional hazards regression model. The mortality rates for the first, second, and third tertiles of the first annual FPG-CV were 8.64, 12.71, and 30.82 per 1000 person-years respectively. After adjusting for mean FPG, HbA1c, and other risk factors, the annual FPG-CV was independently associated with cancer incidence, cancer mortality, and cancer incidence or mortality, and the corresponding hazard ratios for the third vs first tertile of the annual FPG-CV were 3.03 (1.98, 4.65), 5.04 (2.32, 10.94), and 2.86 (1.91, 4.29) respectively. The annual variation in FPG was a strong predictor of cancer incidence and mortality in type 2 diabetic patients; therefore, glucose variation may be important in the clinical practice of care management and cancer prevention.

Restricted access

Yu-Tang Chin, Po-Li Wei, Yih Ho, André Wendindondé Nana, Chun A Changou, Yi-Ru Chen, Yu-Chen SH Yang, Meng-Ti Hsieh, Aleck Hercbergs, Paul J Davis, Ya-Jung Shih and Hung-Yun Lin

Thyroid hormone, l-thyroxine (T4), has been shown to promote ovarian cancer cell proliferation via a receptor on plasma membrane integrin αvβ3 and to induce the activation of ERK1/2 and expression of programmed death-ligand 1 (PD-L1) in cancer cells. In contrast, resveratrol binds to integrin αvβ3 at a discrete site and induces p53-dependent antiproliferation in malignant neoplastic cells. The mechanism of resveratrol action requires nuclear accumulation of inducible cyclooxygenase (COX)-2 and its complexation with phosphorylated ERK1/2. In this study, we examined the mechanism by which T4 impairs resveratrol-induced antiproliferation in human ovarian cancer cells and found that T4 inhibited resveratrol-induced nuclear accumulation of COX-2. Furthermore, T4 increased expression and cytoplasmic accumulation of PD-L1, which in turn acted to retain inducible COX-2 in the cytoplasm. Knockdown of PD-L1 by small hairpin RNA (shRNA) relieved the inhibitory effect of T4 on resveratrol-induced nuclear accumulation of COX-2- and COX-2/p53-dependent gene expression. Thus, T4 inhibits COX-2-dependent apoptosis in ovarian cancer cells by retaining inducible COX-2 with PD-L1 in the cytoplasm. These findings provide new insights into the antagonizing effect of T4 on resveratrol’s anticancer properties.

Restricted access

Zhi Long, Yinan Li, Yu Gan, Dongyu Zhao, Guangyu Wang, Ning Xie, Jessica M Lovnicki, Ladan Fazli, Qi Cao, Kaifu Chen and Xuesen Dong

Homeobox A10 (HOXA10) is an important transcription factor that regulates the development of the prostate gland. However, it remains unknown whether it modulates prostate cancer (PCa) progression into castrate-resistant stages. In this study, we have applied RNA in situ hybridization assays to demonstrate that downregulation of HOXA10 expression is associated with castrate-resistant PCa. These findings are supported by public RNA-seq data showing that reduced HOXA10 expression is correlated with poor patient survival. We show that HOXA10 suppresses PCa cell proliferation, anchorage colony formation and xenograft growth independent to androgens. Using AmpliSeq transcriptome sequencing, we have found that gene groups associated with lipid metabolism and androgen receptor (AR) signaling are enriched in the HOXA10 transcriptome. Furthermore, we demonstrate that HOXA10 suppresses the transcription of the fatty acid synthase (FASN) gene by forming a protein complex with AR and prevents AR recruitment to the FASN gene promoter. These results lead us to conclude that downregulation of HOXA10 gene expression may enhance lipogenesis to promote PCa cell growth and tumor progression to castrate-resistant stage.

Free access

Yu-fang Bi, Rui-xin Liu, Lei Ye, Hai Fang, Xiao-ying Li, Wei-qing Wang, Ji Zhang, Kan-Kan Wang, Lei Jiang, Ting-wei Su, Zhong-yuan Chen and Guang Ning

Although there has been increased knowledge about the molecular biology of neuroendocrine tumors (NETs), little is known about thymic carcinoids and even less about those with excessive hormone disorders, such as ectopic ACTH syndrome. This study was designed to gain insights into the molecular networks underlying the tumorigenesis of thymic carcinoids with ACTH secretion. By an approach integrating cDNA microarray and methods of computational biology, we compare gene expression profile between ACTH-producing thymic carcinoids and the normal thymus. In total, there are 63 biological categories increased and 108 decreased in thymic carcinoids. Cell proliferation was stimulated, which may explain the relatively uncontrolled cell growth of the tumor. Dysregulation of the Notch-signaling pathway was likely to be underlying the neuroendocrine features of this type of tumors. Moreover, inhibition of immunity and increased neuropeptide signaling molecules (POMC and its sorting molecule CPE) made the clinical manifestation reasonable and thus validated the array data. In conclusion, thymic carcinoids have a distinct gene expression pattern from the normal thymus, and they are characterized by deregulations of a series of biofunctions, which may be involved in the development of NETs. Hence, this study has provided not only a detailed comprehension of the molecular pathogenesis of thymic carcinoids with ectopic ACTH syndrome, but also a road map to approach thymic NETs at the system level.

Restricted access

André Wendindondé Nana, Yu-Tang Chin, Chi-Yu Lin, Yih Ho, James A Bennett, Ya-Jung Shih, Yi-Ru Chen, Chun A Changou, Jens Z Pedersen, Sandra Incerpi, Leroy F Liu, Jacqueline Whang-Peng, Earl Fu, Wen-Shan Li, Shaker A Mousa, Hung-Yun Lin and Paul J Davis

The molecular pathogenesis of colorectal cancer encompasses the activation of several oncogenic signaling pathways that include the Wnt/β-catenin pathway and the overexpression of high mobility group protein A2 (HMGA2). Resveratrol – the polyphenolic phytoalexin – binds to integrin αvβ3 to induce apoptosis in cancer cells via cyclooxygenase 2 (COX-2) nuclear accumulation and p53-dependent apoptosis. Tetraiodothyroacetic acid (tetrac) is a de-aminated derivative of l-thyroxine (T4), which – in contrast to the parental hormone – impairs cancer cell proliferation. In the current study, we found that tetrac promoted resveratrol-induced anti-proliferation in colon cancer cell lines, in primary cultures of colon cancer cells, and in vivo. The mechanisms implicated in this action involved the downregulation of nuclear β-catenin and HMGA2, which are capable of compromising resveratrol-induced COX-2 nuclear translocation. Silencing of either β-catenin or HMGA2 promoted resveratrol-induced anti-proliferation and COX-2 nuclear accumulation which is essential for integrin αvβ3-mediated-resveratrol-induced apoptosis in cancer cells. Concurrently, tetrac enhanced nuclear abundance of chibby family member 1, the nuclear β-catenin antagonist, which may further compromise the nuclear β-catenin-dependent gene expression and proliferation. Taken together, these results suggest that tetrac targets β-catenin and HMGA2 to promote resveratrol-induced-anti-proliferation in colon cancers, highlighting its potential in anti-cancer combination therapy.