Involvement of adiponectin and leptin in breast cancer: clinical and in vitro studies

in Endocrine-Related Cancer
(Correspondence should be addressed to T Jardé; Email: jardethierry@yahoo.fr)

Obesity is a risk factor for breast cancer development. A recent hypothesis suggests that the adipokines, adiponectin and leptin, are involved in breast cancer development. This prompted us to investigate the role of adiponectin and leptin in mammary carcinogenesis. Adiponectin receptors (AdipoR1 and AdipoR2) and leptin receptor (Ob-Rt, representing all the isoforms of Ob-R) proteins were detected by immunohistochemistry in in situ ductal carcinoma, invasive ductal malignancy, and healthy adjacent tissue. In addition, mRNA expression of adiponectin, AdipoR1, AdipoR2, leptin, Ob-Rt, and Ob-Rl (the long isoform of Ob-R) was observed in MCF-7 breast cancer cells. Interestingly, leptin mRNA expression was 34.7-fold higher than adiponectin mRNA expression in the MCF-7 cell line. Moreover, adiponectin (10 μg/ml) tended to decrease the mRNA expression of leptin (−36%) and Ob-Rl (−28%) and significantly decreased Ob-Rt mRNA level (−26%). In contrast, leptin treatment (1 μg/ml) significantly decreased AdipoR1 mRNA (−23%). Adiponectin treatment (10 μg/ml) inhibited the proliferation of MCF-7 cells, whereas leptin (1 μg/ml) stimulated the growth of cancer cells. In addition, adiponectin inhibited leptin-induced cell proliferation (both 1 μg/ml). Using microarray analysis, we found that adiponectin reduced the mRNA levels of genes involved in cell cycle regulation (mitogen-activated protein kinase 3 and ATM), apoptosis (BAG1, BAG3, and TP53), and potential diagnosis/prognosis markers (ACADS, CYP19A1, DEGS1, and EVL), whereas leptin induced progesterone receptor mRNA expression. In conclusion, the current study indicates an interaction of leptin- and adiponectin-signaling pathways in MCF-7 cancer cells whose proliferation is stimulated by leptin and suppressed by adiponectin.

Abstract

Obesity is a risk factor for breast cancer development. A recent hypothesis suggests that the adipokines, adiponectin and leptin, are involved in breast cancer development. This prompted us to investigate the role of adiponectin and leptin in mammary carcinogenesis. Adiponectin receptors (AdipoR1 and AdipoR2) and leptin receptor (Ob-Rt, representing all the isoforms of Ob-R) proteins were detected by immunohistochemistry in in situ ductal carcinoma, invasive ductal malignancy, and healthy adjacent tissue. In addition, mRNA expression of adiponectin, AdipoR1, AdipoR2, leptin, Ob-Rt, and Ob-Rl (the long isoform of Ob-R) was observed in MCF-7 breast cancer cells. Interestingly, leptin mRNA expression was 34.7-fold higher than adiponectin mRNA expression in the MCF-7 cell line. Moreover, adiponectin (10 μg/ml) tended to decrease the mRNA expression of leptin (−36%) and Ob-Rl (−28%) and significantly decreased Ob-Rt mRNA level (−26%). In contrast, leptin treatment (1 μg/ml) significantly decreased AdipoR1 mRNA (−23%). Adiponectin treatment (10 μg/ml) inhibited the proliferation of MCF-7 cells, whereas leptin (1 μg/ml) stimulated the growth of cancer cells. In addition, adiponectin inhibited leptin-induced cell proliferation (both 1 μg/ml). Using microarray analysis, we found that adiponectin reduced the mRNA levels of genes involved in cell cycle regulation (mitogen-activated protein kinase 3 and ATM), apoptosis (BAG1, BAG3, and TP53), and potential diagnosis/prognosis markers (ACADS, CYP19A1, DEGS1, and EVL), whereas leptin induced progesterone receptor mRNA expression. In conclusion, the current study indicates an interaction of leptin- and adiponectin-signaling pathways in MCF-7 cancer cells whose proliferation is stimulated by leptin and suppressed by adiponectin.

Introduction

Obesity is related to many metabolic disorders like type 2 diabetes mellitus, coronary heart disease, and hypertension, and is notably associated with an increased risk for breast cancer in postmenopausal women (Klein et al. 2002). Numerous factors (obesity-associated hyperinsulinemia and high adipose tissue-induced estrogen levels) have been suggested to explain the relationship between obesity and breast cancer, but none have been totally conclusive. Adipose cells were initially considered as a fat-storing tissue but are now known to have much more complex and dynamic functions, notably acting as an endocrine organ secreting a range of adipokines, including adiponectin and leptin.

Adiponectin is a 224 amino acid-long polypeptide with several metabolic activities, including anti-diabetic, anti-inflammatory, and anti-atherogenic properties (Maeda et al. 1996, Kershaw & Flier 2004). This cytokine is the most abundant protein synthesized by adipose cells, with plasma concentrations ranging from 2 to 30 μg/ml (Maeda et al. 1996). Paradoxically, obese subjects present strongly decreased levels of circulating adiponectin (Arita et al. 1999, Matsubara et al. 2002). Leptin is a 16 kDa polypeptide hormone encoded by the obese gene (Zhang et al. 1994) that is involved in the regulation of energy balance (De Vos et al. 1995), reproduction, and immunity (Mounzih et al. 1997, Caldefie-Chezet et al. 2003), and acts as a pro-inflammatory factor (Lago et al. 2007). Despite the numerous nonadipose sources described (Mix et al. 2000, Solberg et al. 2005), the main source of leptin in the body remains adipose tissue. In stark contrast with adiponectin, plasma leptin concentration increases with body mass index (Ruhl & Everhart 2001).

Current hypotheses suggest that adiponectin and leptin could play a role in breast cancer development. Several studies have demonstrated that low serum adiponectin levels and high serum leptin levels are associated with increased risk for breast cancer (Miyoshi et al. 2003, Mantzoros et al. 2004, Han et al. 2005, Chen et al. 2006b). Furthermore, Chen et al. (2006b) reported that the ratio between serum leptin and serum adiponectin correlated positively with tumor size.

To date, only two studies have examined the expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in breast cancer biopsies. Takahata et al. (2007) observed that adiponectin mRNA was not expressed in breast tumor tissue or in breast cancer cell lines, whereas AdipoR1 and AdipoR2 mRNAs were both expressed. Korner et al. (2007) reported that AdipoR1 and AdipoR2 proteins were detected in 30.4 and 26.3% of breast cancer biopsies respectively. In previous studies, we demonstrated that leptin and leptin receptor (Ob-Rt) were involved in breast cancer, since both markers were expressed in mammary tumor (Caldefie-Chezet et al. 2005, Jarde et al. 2008a).

Numerous in vitro studies have explored the involvement of adipokines in breast cancer. Adiponectin has been shown to mediate an anti-proliferative response, while leptin enhances proliferation in MCF7, MDA-MB-231, SK-BR-3, and T47D breast cancer cells (Dieudonne et al. 2002, 2006, Hu et al. 2002, Kang et al. 2005, Korner et al. 2007, Ray et al. 2007, Grossmann et al. 2008). The activities of both adiponectin and leptin in breast cancer cell growth are in part mediated by cell cycle inhibition or stimulation respectively, (Nakayama et al. 2007, Saxena et al. 2007) and by the induction of apoptosis or down-regulation of pro-apoptotic p53 mRNA respectively (Chen et al. 2006a, Dieudonne et al. 2006).

In order to better understand the potential involvement of these two adipokines in breast cancer, we investigated the expression of adiponectin and leptin receptors in biopsies of different grades of epithelial ductal breast lesions and adjacent normal tissue. We also evaluated in vitro the effect of adiponectin, leptin, or both on breast cancer cell proliferation, on the adiponectin and leptin pathways, and on the expression of molecular markers used to diagnose and gauge prognosis of breast cancer.

Materials and methods

Clinical study on breast cancer biopsies

Breast cancer biopsies

A total of 45 breast cancer tissue samples from women not treated by radiotherapy or chemotherapy were obtained from the tumor bank at the Jean-Perrin Anti-Cancer Center (Clermont-Ferrand, France). Primary breast cancer tissue samples were fixed in alcohol–formalin–acetic acid and embedded in paraffin.

Tissue classification

Diagnoses were made on paraffin-embedded 4 μm tissue sections after hematoxylin–eosin–saffron staining. Tissues were classified according to histological subtypes as malignant lesions corresponding to in situ ductal carcinoma (n=14) or invasive ductal carcinoma of different grades (n=45). Invasive tumors were evaluated according to the SBR grade classification modified by Elston & Ellis (1991). Normal tissue adjacent to breast cancer was also analyzed (n=40).

Immunohistochemistry

AdipoR1, AdipoR2, and Ob-Rt protein expression was investigated by immunohistochemical staining using affinity-purified polyclonal biotinylated antibodies raised against AdipoR1 (Phoenix Pharmaceuticals, Burlingame, CA, USA), AdipoR2 (Phoenix Pharmaceuticals), and Ob-Rt (recognizing all six isoforms of Ob-R; Roche).

Sections were deparaffinated in xylene and rehydrated in graded alcohols. Antigen retrieval was performed for AdipoR1 and AdipoR2 localization. The immunohistochemical procedure was performed as previously described (Jarde et al. 2008a).

Microscopic examination

The immunostaining was assessed by a pathologist blinded to the clinical data. AdipoR1, AdipoR2, and Ob-Rt expression in tumor and normal adjacent tissues was classified as either negative (<5% labeled cells) or positive (≥5% labeled cells). Expression intensity was graded as 0 (none), 1+ (mild), 2+ (moderate), or 3+ (intense).

In vitro studies

Cell culture

The human breast cancer cell line MCF-7 was obtained from the American Type Culture Collection (ATCC). These cells were routinely cultured in a phenol-red-free RPMI 1640 medium supplemented with 10% heat-inactivated FCS, l-glutamine (2 mM), and gentamicin (50 μg/ml) at 37 °C under 5% CO2 atmosphere.

Immunohistochemistry

MCF-7 cells were grown on plastic slides for 48 h in a 37 °C humidified atmosphere under 5% CO2 before fixing with acetone for 10 min. Immunohistochemical detection of AdipoR1, AdipoR2, and Ob-Rt proteins was performed as described above.

Proliferation assay

MCF-7 cells were plated at a density of 5×103 cells in 96-well plates in a complete medium, and were allowed to adhere in an incubator. After 48 h, cells were washed with PBS and exposed to fresh medium containing 5% heat-inactivated FCS with full-length human trimeric adiponectin at 0.1, 1 (obese concentration), and 10 μg/ml (physiological concentration; Neumeier et al. 2006), with human recombinant leptin (Roche) at 0.01 (physiological concentration), 0.1 (obese concentration), and 1 μg/ml, or both, adiponectin and leptin (1 μg/ml each). The percentage of FCS in the medium was reduced to minimize the effect of other growth factors on breast cancer cells. After 24, 48, 72, and 96 h, cells were washed with PBS and 200 μl of a 25 μg/ml solution of resazurin in RPMI 1640 medium were added to each well. The plates were incubated for 2 h at 37 °C in a humidified atmosphere containing 5% CO2. Fluorescence was then measured on an automated 96-well plate reader (Fluoroskan Ascent FL, Thermo Fisher Scientific, Wilmington, DE, USA) using an excitation wavelength of 530 nm and an emission wavelength of 590 nm. Under these conditions, fluorescence was proportional to the number of living cells in the well (Debiton et al. 2003). The cell proliferation assay was performed five times in replicates of six wells for each concentration tested.

Microarray analysis

MCF-7 cells were exposed to adiponectin (10 μg/ml) or leptin (1 μg/ml) for 96 h as described above. Total RNA was extracted using TRIzol according to the manufacturer's guidelines (Invitrogen). The quality and quantity of total RNA were evaluated by measuring the A260/A280 ratio (at least 1.9) using a NanoDrop 8000 spectrophotometer (Thermo Fisher Scientific) coupled with gel electrophoresis. Using the TrueLabeling-AMP 2.0 kit (Superarray, Frederick, MD, USA), the mRNAs were reverse transcribed into cDNA and converted by transcription to obtain biotin-labeled cRNA using biotin-16-UTP (Roche). The biotinylated cRNA probes were purified with the ArrayGrade cRNA cleanup kit (Superarray) and then hybridized overnight to the pretreated Oligo GEArray Human Breast Cancer Biomarker Microarray (Superarray), which profiles the expression of 264 genes that are considered useful molecular markers in the diagnosis and prognosis of breast cancer. Following several washing steps, biotinylated cRNA probes hybridized to the array were detected by a Chemiluminescent Detection kit (Superarray), using alkaline phosphatase-conjugated streptavidin and CDP-Star as chemiluminescent substrate. Chemiluminescence was detected on a CCD camera Versadoc Imaging System (Bio-Rad Laboratories). Data acquisition and quantification of spot intensities were performed using GEArray Expression Analysis Suite 2.0 software (Superarray). Data evaluation included background correction (subtraction of minimum value) and housekeeping gene normalization. Each determination corresponds to the mean value±s.d. of four independent assays to ensure reproducibility of the results. Only genes whose expression changed similarly in all four comparative analyses were considered adipokine-responsive genes (P<0.1, statistical trend; P<0.05, significant difference, t-test), as previously described (Le Corre et al. 2006).

Quantitative RT-PCR

The GEArray results were validated by confirming the adipokine-induced modification of gene expression using quantitative reverse transcription-PCR (qRT-PCR). We also investigated the effect of adiponectin and leptin on selected genes (adiponectin, leptin, AdipoR1, AdipoR2, Ob-Rt, and Ob-Rl), which were not spotted on microarrays.

RT was conducted from 1 μg total RNA (extracted for GEArray analysis), yielding 20 μl cDNA as previously described (Goncalves-Mendes et al. 2004). The cDNAs were amplified using the primers summarized in Table 1. The qPCR was performed using Light Cycler Fast Start DNA Master SYBR Green I following the manufacturer's instructions, on a LightCycler Instrument (Roche Diagnostics). Sample mRNA copy numbers were extrapolated from standard curves obtained with serially diluted purified PCR products. The real-time qPCR program was 50 °C for 2 min, 95 °C for 10 min, and 50 cycles of 95 °C for 15 s and 60 °C for 1 min. Relative levels of gene expression were calculated by target gene levels normalized to the endogenously expressed housekeeping gene (18S rRNA). The second derivative maximum method was used to determine the crossing point (Cp) for each sample (realized in triplicate). The mean value was used to calculate the ΔCp (Cp of the target gene minus Cp of the 18S gene). Gene expression levels were obtained according to the transformation (2ΔCp). Results were expressed as the mean±s.e.m. of five independent experiments.

Table 1

Primers used in quantitative reverse transcription-PCR assays

Sequence
GeneForwardReverse
Adiponectin5′-ATGGTCCTGTGATGCTTTGA-3′5′-GAGAGTAAATGCACCAATAAG-3′
Leptin5′-TGAGCACCTGCTTCATGCTC-3′5′-TGAGTGCGGTTTGACCACTG-3′
AdipoR15′-AATTCCTGAGCGCTTCTTTCCT-3′5′-CATAGAAGTGGACAAAGGCTGC-3′
AdipoR25′-TGCAGCCATTATAGTCTCCCAG-3′5′-GAATGATTCCACTCAGGCCTAG-3′
OB-Rt5′-CATTTTATCCCCATTGAGAAGTA-3′5′-CTGAAAATTAAGTCCTTGTGCCCAG-3′
Ob-Rl5′-GATAGAGGCCCAGGCATTTTTTA-3′5′-ACACCACTCTCTCTCTTTTTGATTGA-3′
ACADS5′-GCTGCCATGCTGAAGGATAA-3′5′-GGCATCTCTGTCACGTAGCC-3′
ATM5′-TGGATCCAGCTATTTGGTTTGA-3′5′-CCAAGTATGTAACCAACAATAGAAGAAGTAG-3′
BAG15′-CACAGCAATGAGAAGCACG-3′5′-GTGTTTCCATTTCCTTCAGAG-3′
BAG35′-ATGACCCATCGAGAAACTGC-3′5′-AATTGGGATGTGTCCAGGAG-3′
CIRBP5′-GAGGGCTGAGTTTTGACACC-3′5′-TGGGTCTCCCTGTCTTTCAC-3′
CYP19A15′-CAAGGTTATTTTGATGCATGG-3′5′-AATCCTTGACAGACTTCTCAT-3′
DEGS15′-TTGAGGGCTGGTTCTTCTGT-3′5′-AATTGGTTTGGGGTTGATGA-3′
ESR15′-GTGTACAACTACCCCGAGGGC-3′5′-AAACCCCCCAGGCCGTTGGAG-3′
EVL5′-TTCCGTGATGGTCTACGATG-3′5′-GCTGGCAGTGTTGTGGTAGA-3′
HMGB35′-TCAGCAGCCTTCCAAGGTAT-3′5′-CATTTGGCCCCACAAAATAG-3′
KIAA13245′-AACACCCACTGCTGGAAATC-3′5′-GTTTGAGGCAAGCAGAAAGG-3′
KRT185′-TGAGACGTACAGTCCAGTCCTT-3′5′-GCTCCATCTGTAGGGCGTAG-3′
MAPK35′-TGCTGAACTCCAAGGGCTAT-3′5′-TAGTGCTTGCCAGGGAAGAT-3′
MUC15′-GTGCCCCCTAGCAGTACCG-3′5′-GACGTGCCCCTACAAGTTGG-3′
MX15′-AGCTCGGCAACAGACTCTTC-3′5′-GGATGATCAAAGGGATGTGG-3′
PGR5′-CGCGCTCTACCCTGCACTC-3′5′-TGAATCCGGCCTCAGGTAGTT-3′
PSMD75′-GAATGACATTGCCATCAACG-3′5′-GTAGGCAGCCCTAGGTCCTT-3′
TP535′-GCGCACAGAGGAAGAGAATC-3′5′-AGAGGAGCTGGTGTTGTTGG-3′
18S5′-GTCTGTGATGCCCTTAGATG-3′5′-AGCTTATGACCCGCACTTAC-3′

To confirm the identity of adiponectin, leptin, AdipoR1, AdipoR2, Ob-Rt, and Ob-Rl PCR products, the PCR products were sequenced in both directions using the same primers as described above for amplification and a DNA dye terminator cycle sequencing kit (Applied Biosytems, Courtaboeuf, France). Sequence analysis was performed on an Applied Biosystems model 377 DNA Sequencer.

Statistical analysis

Statistical analysis was performed using the χ2 test for the immunohistochemical procedure and paired Student's t-test for in vitro experiments. A P value of <0.05 (flagged as *) was considered as statistically significant, whereas P<0.1 (flagged as #) was considered as a trend.

Results

Expression of AdipoR1, AdipoR2, and Ob-Rt in breast tissue

AdipoR1, AdipoR2, and Ob-Rt were detected by immunohistochemical analysis in the cytoplasm of invasive ductal cancer cells and adjacent normal cells (Table 2A). AdipoR1 expression was positive in 18% (8 out of 45) of breast cancer tissues and 8% (3 out of 40) of normal adjacent tissues (Fig. 1A and D). AdipoR1 appeared to be induced in breast cancer tissue versus normal tissue, but the difference was not statistically significant (χ2 test, P=0.16). AdipoR2 expression was more pronounced in malignant cells than normal tissue, since AdipoR2 was detected in 82% (37 out of 45) of tumours but in only 53% (21 out of 40) of healthy tissue (χ2 test, P<0.01; Fig. 1B and E). Ob-Rt protein was detected in 38 out of the 45 (84%) invasive ductal tissues and in 29 out of the 40 (73%) normal adjacent tissues studied, without significant difference between the two tissues (χ2 test, P=0.18; Fig. 1C and F).

Table 2

The expression of AdipoR1, AdipoR2 and Ob-Rt (A), the percentage of labelled cells, and staining intensity (B) in breast ductal cancer and in adjacent normal tissue

Total number of cases studiedAdipoR1 expressionAdipoR2 expressionOb-Rt expression
Tissuenn1%n2%n3%
(A)
 Normal tissue adjacent to breast cancer403821532973
 In situ ductal carcinoma1421411791179
 Invasive ductal carcinoma4581837823884
    Grade 11321511851292
    Grade 21742415881271
    Grade 31521311731493
AdipoR1AdipoR2ObRt
Positive AdipoR1 expressionLabeled cellsStaining intensityPositive AdipoR2 expressionLabeled cellsStaining intensityPositive ObRt expressionLabeled cellsStaining intensity
Tissuen1%1+2+3+n2%1+2+3+n3%1+2+3+
(B)
 Normal tissue adjacent to breast cancer355±153002180±516502985±518101
 In situ ductal carcinoma2100±02001170±109201185±10560
 Invasive ductal carcinoma855±158103775±531603885±525121
    Grade 1240±301101180±109201290±5651
    Grade 2465±204001580±513201290±5930
    Grade 3240±302001160±159201480±101040
Figure 1
Figure 1

Immunohistochemical detection of AdipoR1, AdipoR2 and Ob-Rt in breast tissue. Invasive ductal cancer cells express AdipoR1 (A), AdipoR2 (B) and Ob-Rt (C). Healthy adjacent tissue presents immunopositivity for AdipoR1 (D), AdipoR2 (E) and Ob-Rt (F).

Citation: Endocrine-Related Cancer 16, 4; 10.1677/ERC-09-0043

Download Figure

The in situ ductal carcinoma showed low expression of AdipoR1 (14% of cases studied) and high expression of AdipoR2 and Ob-Rt (79% of cases studied; Table 2A).

Finally, in cases expressing AdipoR1, AdipoR2, or Ob-Rt, the percentage of labeled cells and staining intensity were similar between invasive ductal carcinoma and adjacent normal tissue (Table 2B).

Expression of adiponectin, leptin, and their receptors in MCF-7 breast cancer cells

The mRNA of adiponectin, leptin, and their receptors was detected in MCF-7 cancer cells (Fig. 2A). Interestingly, leptin expression was radically higher (35-fold) than adiponectin expression. In addition, AdipoR1 expression was 15-fold higher than AdipoR2 expression. Ob-Rt expression was sevenfold higher than the expression of the full-length isoform Ob-Rl. Finally, AdipoR1 and AdipoR2 were highly significantly more expressed than Ob-Rt (120- and 8-fold higher expression respectively) and Ob-Rl (849- and 58-fold higher expression respectively; t-test, P<0.01).

Figure 2
Figure 2

Expression of adiponectin, leptin and their specific receptors in MCF-7 breast cancer cells. The expression of adiponectin, leptin and their receptors was analysed by quantitative RT-PCR as described in Materials and Methods (A). Bars are the means ± S.E.M. obtained from five independent experiments. The protein expression of adiponectin, leptin and their receptors was investigated by immunohistochemistry (B).

Citation: Endocrine-Related Cancer 16, 4; 10.1677/ERC-09-0043

Download Figure

Immunohistochemical staining detected adiponectin, leptin, and their receptors in the cytoplasm of MCF-7 breast cancer cells (Fig. 2B).

Effect of adiponectin, leptin, or both adipokines on breast cancer cell proliferation

Adiponectin (10 μg/ml) significantly decreased the proliferation of MCF-7 cells by 11.1, 11.2, 14.4, and 15.6% at 24, 48, 72, and 96 h respectively versus controls (t-test, P<0.05; Fig. 3A). At 1 μg/ml, adiponectin significantly inhibited cellular growth by 7.8 and 7.6% at 72 and 96 h respectively versus controls (t-test, P<0.05). Moreover, the effect of adiponectin at 10 μg/ml was significantly more pronounced at all time points analysed compared with the effects of 1 μg/ml (t-test, P<0.05), whereas 0.1 μg/ml had no effect.

Figure 3
Figure 3

Effect of adiponectin, leptin and both adipokines on MCF-7 breast cancer cell proliferation. Breast cancer cells were exposed to adiponectin (A), leptin (B) or both adipokines (C) for the times indicated. Bars are the means ± S.E.M. obtained from five determinations. *Significant difference compared to control (P<0.05, t-test).

Citation: Endocrine-Related Cancer 16, 4; 10.1677/ERC-09-0043

Download Figure

Leptin at 1 μg/ml enhanced the growth of MCF-7 breast cancer cells by 10.5, 13.4, and 16.3% at 48, 72, and 96 h respectively versus controls (t-test, P<0.05; Fig. 3B). The lower leptin concentrations (0.01 and 0.1 μg/ml) were inefficient in reducing cell proliferation.

Interestingly, adiponectin at 1 μg/ml significantly inhibited leptin-stimulated breast cancer cell proliferation at 48, 72, and 96 h versus controls (t-test, P<0.05; Fig. 3C).

Interaction of adiponectin and leptin pathways

These studies were performed using the most efficient concentrations of adiponectin (10 μg/ml) and leptin (1 μg/ml) on MCF-7 cancer cells that were incubated for 96 h (Fig. 4). Adiponectin significantly upregulated (88% induction) adiponectin mRNA and downregulated (−26%) Ob-Rt mRNA expression. In addition, adiponectin tended to downregulate leptin (−36%) and Ob-Rl (−28%) expression. Adiponectin treatment had no effect on AdipoR1 and AdipoR2 mRNA abundance.

Figure 4
Figure 4

Effect of adiponectin and leptin on their own pathways. MCF-7 breast cancer cells were exposed to adiponectin (10 μg/ml) or leptin (1 μg/ml) for 96 h. The expression of adiponectin, leptin and their receptors was analysed by quantitative RT-PCR as described in Materials and methods. Bars are the means ± S.E.M. obtained from five determinations. *Significant difference compared to control (P<0.05, t-test), #Statistical trend compared to control (P<0.1, t-test).

Citation: Endocrine-Related Cancer 16, 4; 10.1677/ERC-09-0043

Download Figure

Leptin significantly upregulated (+30%) Ob-Rl mRNA and downregulated (−23%) AdipoR1 mRNA expression. Leptin treatment also tended to induce leptin mRNA expression (+31%). Leptin had no effect on the expression of adiponectin, AdipoR2, or Ob-Rt mRNA.

Effect of adipokines on gene expression

We used microarray analysis to explore the effects of adiponectin and leptin on numerous pathways involved in breast cancer development. Table 3 summarizes the genes showing significant differences (P<0.05) or statistical trends (P<0.1) versus controls. We identified 15 genes that were altered by adiponectin treatment and 3 genes that were modified by leptin incubation. These results were confirmed by qRT-PCR (Fig. 5).

Table 3

Expression of genes altered by adiponectin or leptin treatment. MCF-7 breast cancer cells were exposed to adiponectin (10 μg/ml) or leptin (1 μg/ml) for 96 h and gene expression was quantified using microarray (n=4)

AdiponectinLeptin
Protein function and gene nameGene symbolAccession numberFold changeFold change
Cell-cycle regulation
 Ataxia telangiectasia mutatedATMNM_0000510.79NS
 Mitogen-activated protein kinase 3MAPK3NM_0027460.85*NS
Apoptosis
 BCL2-associated athanogeneBAG1NM_0043230.72*NS
 BCL2-associated athanogene 3BAG3NM_0042810.71NS
 Myxovirus resistance 1, interferon-inducible protein p78MX1NM_0024621.53*NS
 Tumor protein p53TP53NM_000546NS0.79
Transcription factors and regulators
 Estrogen receptor 1ESR1NM_0001250.75NS
 High-mobility group box 3HMGB3NM_0053420.81NS
 Progesterone receptorPGRNM_000926NS1.38
Potential diagnostic markers
 Cytochrome P450, family 19, subfamily A, polypeptide 1CYP19A1NM_0001030.77NS
 Keratin 18KRT18NM_0002240.85NS
 Mucin 1, cell surface associatedMUC1NM_001018016NS2.31*
Potential prognostic markers
 Acyl-coenzyme A dehydrogenase, C-2 to C-3 short chainACADSNM_0000170.64*NS
 Cold-inducible RNA-binding proteinCIRBPNM_0012800.78NS
 Degenerative spermatocyte homolog 1, lipid desaturaseDEGS1NM_0036760.55*NS
 Enah/Vasp-likeEVLNM_0163370.74NS
 KIAA1324KIAA1324NM_0207750.62NS
 Proteasome 26S subunit 7PSMD7NM_0028110.75NS

Significant differences from controls are flagged as *(P<0.05, t-test), and statistically trends versus controls are flagged as (P<0.1, t-test). NS, not significant.

Figure 5
Figure 5

qRT-PCR validation of candidate genes. Data obtained from microarray experiments (open bars) and qRT-PCR analysis (solid bars) are shown. *Significant difference compared to control (P<0.05, t-test), #Statistical trend compared to control (P<0.1, t-test).

Citation: Endocrine-Related Cancer 16, 4; 10.1677/ERC-09-0043

Download Figure

Discussion

Obesity is an established risk factor for breast cancer in postmenopausal women (Chu et al. 1991, Lahmann et al. 2004). This study provides evidence that adiponectin and leptin, which are both adipocyte-secreted hormones that are deregulated in obesity, may be involved in breast cancer development.

Using an immunohistochemical approach, we detected AdipoR1, AdipoR2, and Ob-Rt in breast cancer tissue and in normal tissue adjacent to malignant lesions. However, AdipoR2 and Ob-Rt were expressed in more than 80% of breast cancer tissues studied, in contrast with AdipoR1 that was found in only 18% of cancer tissues. Korner et al. (2007) recently have investigated adiponectin receptor expression in breast cancer biopsies and showed that AdipoR1 and AdipoR2 were expressed in about 30% of cancer tissues studied. Our study suggests that AdipoR2 may be the effective receptor for in vivo adiponectin signaling in cancer tissue. However, this notion remains uncertain, since other studies obtained conflicting results. Nakayama et al. (2007) noted that siRNA against AdipoR1 completely abrogated the growth inhibition of adiponectin in T47D cells, and limited the anti-proliferative activity of adiponectin in MDA-MB-231 cells to about 50%. In contrast, two studies reported that siRNA against AdipoR1, AdipoR2, or both had no effect on adiponectin-mediated inhibition of the proliferation in MDA-MB-231 cells (Wang et al. 2006, Dos Santos et al. 2008).

We also observed that AdipoR2 expression was higher in breast cancer tissue than in normal adjacent tissue. A recent study has reported higher levels of adiponectin receptors in colorectal carcinomas versus nontumor specimens (Williams et al. 2008). In another investigation, AdipoR1 expression tended to be more pronounced in breast malignant cells than normal tissue (Korner et al. 2007). The relevance of these observations is still unclear, but may indicate an upregulation of adiponectin receptors in carcinogenesis.

In the current study, adiponectin mRNA and protein were identified in MCF-7 breast cancer cells for the first time, whereas Takahata et al. (2007) did not observe adiponectin mRNA expression in breast cancer cell lines. Interestingly, leptin mRNA expression in MCF-7 cells was dramatically higher (34.7-fold) than adiponectin mRNA expression. This finding is in accordance with our previous immunohistochemical study, where adiponectin-positive staining was noted in 15% of the 45 breast cancer tissues studied and leptin-positive staining was observed in 80% of the 45 breast cancer tissues (Jarde et al. 2008b). These results suggest that leptin is much more abundant in the local breast cancer environment than adiponectin. As previously described (Dieudonne et al. 2002, Nakayama et al. 2007), adiponectin and leptin receptors were identified in the MCF-7 cells, with the latter being significantly lower. Interestingly, we noted that adiponectin induced adiponectin mRNA (P<0.05) and that leptin increased leptin (P<0.1) and Ob-Rl (P<0.05) mRNA expression in MCF-7 cells. Chen et al. (2006a) also reported that leptin treatment induced leptin and Ob-Rl mRNA expression in ZR-75-1 breast cancer cells. Thus, these adipokines may autoregulate their pathways to amplify the signal. Moreover, in the present study, adiponectin downregulated the leptin pathway by decreasing leptin, Ob-Rt, and Ob-Rl mRNA expression in MCF-7 cancer cells. Similarly, AdipoR1 mRNA expression was reduced by leptin treatment, a finding that is similar to a recent study where leptin treatment decreased AdipoR1 and AdipoR2 mRNA expression in MDA-MB-231 cells (Dos Santos et al. 2008).

Therefore, these adipokines appear to exert antagonistic activities by downregulating each other's signaling pathway. These results are particularly important where obese women are concerned, since hyperleptinemia can decrease the sensitivity of cancer cells to adiponectin via downregulation of AdipoR1 and upregulation of the leptin pathway. Furthermore, obesity-associated hypoadiponectinemia may limit the negative feedback of adiponectin on leptin signaling in cancer cells.

We also found that adiponectin inhibited the growth of MCF-7 breast cancer cells, whereas leptin induced a proliferative response. Similar results have been observed in previous studies using MCF-7, MDA-MB-231, SK-BR-3, and T47D breast cancer cells (Kang et al. 2005, Dieudonne et al. 2006, Nakayama et al. 2007). We also noted that adiponectin inhibited the proliferative activity of leptin, which underlines the antagonistic activity of these adipokines in breast cancer. Similar results were obtained in preneoplastic colon epithelial cells (Fenton et al. 2008).

To determine the potential pathways involved in the regulation of cell proliferation by these adipokines, we evaluated the effect of adiponectin and leptin on numerous molecular markers of breast cancer using microarray and qRT-PCR analysis. Although an induction of CYP19A1 (aromatase), an enzyme-catalyzing estrogen biosynthesis, and the activation of estrogen receptor-α (ESR1) in MCF-7 cancer cells (Catalano et al. 2003, 2004) by leptin were recently described, the mRNA expression of this enzyme was not altered by leptin in the current study. However, we observed that adiponectin downregulated ERα mRNA and tended to downregulate aromatase mRNA. Recently, Treeck et al. (2008) have showed that adiponectin increased the mRNA expression of ERβ5 in MCF-7 cells, a protein known to negatively interfere with the transcriptional activity of ERα. These results suggest a potential anti-proliferative role of adiponectin in breast cancer, mediated by the decreased in situ estradiol production and decreased sensitivity of cancer cells. We also observed that leptin induced progesterone receptor mRNA expression in MCF-7 cells. The relationship between progesterone and leptin is unclear, but an interaction between these two pathways is possible, since progesterone-induced inhibition of Ob-Rl mRNA has been described in human endometrium (Koshiba et al. 2001).

Mitogen-activated protein kinase 3 (MAPK3) belongs to the family of signal transduction intermediates leading to cell proliferation and is suppressed by adiponectin. Overexpression of MAPK has been observed in breast cancer and metastatic cells (Sivaraman et al. 1997). Recently, Dieudonne et al. (2006) have observed that adiponectin inhibited MAPK phosphorylation in MCF-7 cells. These results suggest that inhibition of MAPK3 expression and/or phosphorylation may be one of the numerous factors explaining the anti-proliferative activity of adiponectin in cancer cells. The physiological role of adiponectin-mediated inhibition of the ATM pathway remains unclear, because this protein induces the activation of cell-cycle checkpoints and the initiation of DNA repair, and may lead to the induction of apoptosis (Prokopcova et al. 2007).

In addition, adiponectin may be involved in the induction of apoptosis by downregulating BAG1, an anti-apoptotic factor, and upregulating MX1 mRNA, a gene engaged in the induction of apoptosis. However, the relationship between adiponectin and the initiation of apoptosis has not been clearly established, and numerous studies have obtained conflicting results. Three recent studies have failed to detect apoptosis in adiponectin-incubated MCF-7, MDA-MB-231, and T47D cells (Wang et al. 2006, Arditi et al. 2007, Nakayama et al. 2007), whereas other studies demonstrated a stimulating effect in MCF-7 and MDA-MB-231 cells (Kang et al. 2005, Dieudonne et al. 2006, Wang et al. 2006). Furthermore, Grossmann et al. noted that adiponectin activated caspase-8 and PARP in MCF-7 cells (Grossmann et al. 2008). Focusing on leptin, we noted that the expression of TP53, an apoptosis-inducible factor, was decreased by leptin treatment. Similar results were obtained in ZR-75-1 breast cancer cells (Chen et al. 2006a). This suggests that leptin may stimulate cell proliferation via downregulation of apoptosis in breast cancer cells.

Adipokines may interact with potential diagnosis markers in MCF-7 cells. KRT18 is a gene encoding for keratin 18 components of the intermediate filaments of the cytoskeleton. Overexpression of KRT18 abrogated the ability of MDA-MB-231 to form tumors and metastasize in athymic mice (Buhler & Schaller 2005). In addition, reducing the expression of KRT18 increased the aggressiveness of breast cancer cell lines. Adiponectin downregulated KRT18 mRNA, and this result suggests that adiponectin may not only be considered as an anti-proliferative factor. Moreover, the treatment of MCF-7 cancer cells with leptin induced the expression of another diagnostic marker gene, MUC1. MUC1 expression is related to the aggressive behavior of human neoplasm and to poor patient outcome (Yonezawa et al. 2008). MUC1 may function as an anti-adhesion molecule enabling invasion into surrounding tissues (Yonezawa et al. 2008).

The present study also provides evidence for an interaction between adiponectin and potential prognostic markers. ACADS proteins are a family of mitochondrial enzymes catalyzing the initial rate-limiting step in the β-oxidation of fatty acyl-CoA. Numerous genes associated with fatty acid metabolism, including ACADS, were upregulated in colorectal cancer versus healthy tissue (Yeh et al. 2006), suggesting that ACADS are involved in carcinogenesis. Moreover, the partial loss of the prognostic marker DEGS1, an enzyme that catalyzes the desaturation of dihydroceramide into ceramide, induced an accumulation of dihydroceramide and led to the inhibition of proliferation with cell-cycle arrest in human neuroblastoma cells (Kraveka et al. 2007). In our conditions, adiponectin significantly decreased ACADS and DEGS1 mRNA expression in MCF-7 cancer cells. There appears to be a close relationship between adiponectin and fatty acids that may at least partially explain the anti-proliferative effect of this adipokine in cancer cells.

Finally, we noted that adiponectin significantly decreased the expression of KIAA1324 mRNA and tended to decrease EVL mRNA expression in MCF-7 cells. KIAA1324, an estrogen-induced gene, is overexpressed in MCF-7 cells compared with non-malignant cell lines (Bauer et al. 2004). EVL, which belongs to the enabled/vasodilator-stimulated phosphoprotein family, regulates the actin cytoskeleton. Upregulation of EVL correlates positively with the clinical stages of breast cancer (Hu et al. 2008). In addition, overexpression of EVL promoted the motility of MCF-7 cells (Hu et al. 2008).

In our study, the effects of these adipokines on cell proliferation and gene expression were modest. However, it is important to note that obesity is associated with both hypoadiponectinemia and hyperleptinemia, which suggests a cumulative effect on breast cancer cell growth via proliferative effects of leptin and a decreased anti-proliferative activity of adiponectin. During breast carcinogenesis, the slightly elevated proliferation capacity explained by the dysregulation of adiponectin and leptin in obesity may be highly relevant. These adipokines also alter gene expression of various proteins relevant in breast cancer development.

In conclusion, this study identified new gene targets of adiponectin that may be relevant for the diagnosis and/or therapy of breast cancer.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work received financial support from the local office of the French Anti-Cancer League (Ligue Contre le Cancer du Puy-de-Dôme). The study was supported by a grant from the Deutsche Forschungsgemeinschaft (BU 1141/3-2). Thierry Jardé was awarded a fellowship from the French Ministry of Research and Technology.

Acknowledgements

The authors thank Prof. C Forestier (Laboratoire de Bactériologie, UFR Pharmacie, Clermont-Ferrand, France) and Prof. G Picard (Laboratoire de Génétique des Eucaryotes et Endocrinologie Moléculaire, Université Blaise Pascal, Clermont-Ferrand, France) for their expert assistance.

References

  • ArditiJDVenihakiMKaralisKPChrousosGP2007Antiproliferative effect of adiponectin on MCF7 breast cancer cells: a potential hormonal link between obesity and cancer. Hormone and Metabolic Research39913.

  • AritaYKiharaSOuchiNTakahashiMMaedaKMiyagawaJHottaKShimomuraINakamuraTMiyaokaK1999Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochemical and Biophysical Research Communications2577983.

  • BauerMAustGSchumacherU2004Different transcriptional expression of KIAA1324 and its splicing variants in human carcinoma cell lines with different metastatic capacity. Oncology Reports11677680.

  • BuhlerHSchallerG2005Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo. Molecular Cancer Research3365371.

  • Caldefie-ChezetFPoulinAVassonMP2003Leptin regulates functional capacities of polymorphonuclear neutrophils. Free Radical Research37809814.

  • Caldefie-ChezetFDamezMde LatourMKonskaGMishellaniFFusillierCGuerryMPenault-LlorcaFGuillotJVassonMP2005Leptin: a proliferative factor for breast cancer? Study on human ductal carcinoma. Biochemical and Biophysical Research Communications334737741.

  • CatalanoSMarsicoSGiordanoCMauroLRizzaPPannoMLAndoS2003Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. Journal of Biological Chemistry2782866828676.

  • CatalanoSMauroLMarsicoSGiordanoCRizzaPRagoVMontanaroDMaggioliniMPannoMLAndoS2004Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. Journal of Biological Chemistry2791990819915.

  • ChenCChangYCLiuCLChangKJGuoIC2006aLeptin-induced growth of human ZR-75-1 breast cancer cells is associated with up-regulation of cyclin D1 and c-Myc and down-regulation of tumor suppressor p53 and p21WAF1/CIP1. Breast Cancer Research and Treatment98121132.

  • ChenDCChungYFYehYTChaungHCKuoFCFuOYChenHYHouMFYuanSS2006bSerum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Letters237109114.

  • ChuSYLeeNCWingoPASenieRTGreenbergRSPetersonHB1991The relationship between body mass and breast cancer among women enrolled in the Cancer and Steroid Hormone Study. Journal of Clinical Epidemiology4411971206.

  • DebitonEMadelmontJCLegaultJBarthomeufC2003Sanguinarine-induced apoptosis is associated with an early and severe cellular glutathione depletion. Cancer Chemotherapy and Pharmacology51474482.

  • De VosPSaladinRAuwerxJStaelsB1995Induction of ob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake. Journal of Biological Chemistry2701595815961.

  • DieudonneMNMachinal-QuelinFSerazin-LeroyVLeneveuMCPecqueryRGiudicelliY2002Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochemical and Biophysical Research Communications293622628.

  • DieudonneMNBussiereMDos SantosELeneveuMCGiudicelliYPecqueryR2006Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochemical and Biophysical Research Communications345271279.

  • Dos SantosEBenaitreauDDieudonneMNLeneveuMCSerazinVGiudicelliYPecqueryR2008Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncology Reports20971977.

  • ElstonCWEllisIO1991Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology19403410.

  • FentonJIBirminghamJMHurstingSDHordNG2008Adiponectin blocks multiple signaling cascades associated with leptin-induced cell proliferation in Apc Min/+ colon epithelial cells. International Journal of Cancer12224372445.

  • Goncalves-MendesNBlanchonLMeinielADastugueBSapinV2004Placental expression of SCO-spondin during mouse and human development. Gene Expression Patterns4309314.

  • GrossmannMENkhataKJMizunoNKRayAClearyMP2008Effects of adiponectin on breast cancer cell growth and signaling. British Journal of Cancer98370379.

  • HanCZhangHTDuLLiuXJingJZhaoXYangXTianB2005Serum levels of leptin, insulin, and lipids in relation to breast cancer in China. Endocrine261924.

  • HuXJunejaSCMaihleNJClearyMP2002Leptin – a growth factor in normal and malignant breast cells and for normal mammary gland development. Journal of the National Cancer Institute9417041711.

  • HuLDZouHFZhanSXCaoKM2008EVL (Ena/VASP-like) expression is up-regulated in human breast cancer and its relative expression level is correlated with clinical stages. Oncology Reports1910151020.

  • JardeTCaldefie-ChezetFDamezMMishellanyFPenault-LlorcaFGuillotJVassonMP2008aLeptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma. Oncology Reports19905911.

  • JardeTCaldefie-ChezetFDamezMMishellanyFPerroneDPenault-LlorcaFGuillotJVassonMP2008bAdiponectin and leptin expression in primary ductal breast cancer and in adjacent healthy epithelial and myoepithelial tissue. Histopathology53484487.

  • KangJHLeeYYYuBYYangBSChoKHYoonDKRohYK2005Adiponectin induces growth arrest and apoptosis of MDA-MB-231 breast cancer cell. Archives of Pharmacological Research2812631269.

  • KershawEEFlierJS2004Adipose tissue as an endocrine organ. Journal of Clinical Endocrinology and Metabolism8925482556.

  • KleinSWaddenTSugermanHJ2002AGA technical review on obesity. Gastroenterology123882932.

  • KornerAPazaitou-PanayiotouKKelesidisTKelesidisIWilliamsCJKapraraABullenJNeuwirthATseleniSMitsiadesN2007Total and high-molecular-weight adiponectin in breast cancer: in vitro and in vivo studies. Journal of Clinical Endocrinology and Metabolism9210411048.

  • KoshibaHKitawakiJIshiharaHKadoNKusukiITsukamotoKHonjoH2001Progesterone inhibition of functional leptin receptor mRNA expression in human endometrium. Molecular Human Reproduction7567572.

  • KravekaJMLiLSzulcZMBielawskiJOgretmenBHannunYAObeidLMBielawskaA2007Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. Journal of Biological Chemistry2821671816728.

  • LagoFDieguezCGomez-ReinoJGualilloO2007The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine and Growth Factor Reviews18313325.

  • LahmannPHHoffmannKAllenNvan GilsCHKhawKTTehardBBerrinoFTjonnelandABigaardJOlsenA2004Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer And Nutrition (EPIC). International Journal of Cancer111762771.

  • Le CorreLChalabiNDelortLBignonYJBernard-GallonDJ2006Differential expression of genes induced by resveratrol in human breast cancer cell lines. Nutrition and Cancer56193203.

  • MaedaKOkuboKShimomuraIFunahashiTMatsuzawaYMatsubaraK1996cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose most abundant gene transcript 1). Biochemical and Biophysical Research Communications221286289.

  • MantzorosCPetridouEDessyprisNChavelasCDalamagaMAlexeDMPapadiamantisYMarkopoulosCSpanosEChrousosG2004Adiponectin and breast cancer risk. Journal of Clinical Endocrinology and Metabolism8911021107.

  • MatsubaraMMaruokaSKatayoseS2002Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. European Journal of Endocrinology147173180.

  • MixHWidjajaAJandlOCornbergMKaulAGokeMBeilWKuskeMBrabantGMannsMP2000Expression of leptin and leptin receptor isoforms in the human stomach. Gut47481486.

  • MiyoshiYFunahashiTKiharaSTaguchiTTamakiYMatsuzawaYNoguchiS2003Association of serum adiponectin levels with breast cancer risk. Clinical Cancer Research956995704.

  • MounzihKLuRChehabFF1997Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology13811901193.

  • NakayamaSMiyoshiYIshiharaHNoguchiS2007Growth-inhibitory effect of adiponectin via adiponectin receptor 1 on human breast cancer cells through inhibition of S-phase entry without inducing apoptosis. Breast Cancer Research and Treatment112405410.

  • NeumeierMWeigertJSchafflerAWehrweinGMuller-LadnerUScholmerichJWredeCBuechlerC2006Different effects of adiponectin isoforms in human monocytic cells. Journal of Leukocyte Biology79803808.

  • ProkopcovaJKleiblZBanwellCMPohlreichP2007The role of ATM in breast cancer development. Breast Cancer Research and Treatment104121128.

  • RayANkhataKJClearyMP2007Effects of leptin on human breast cancer cell lines in relationship to estrogen receptor and HER2 status. International Journal of Oncology3014991509.

  • RuhlCEEverhartJE2001Leptin concentrations in the United States: relations with demographic and anthropometric measures. American Journal of Clinical Nutrition74295301.

  • SaxenaNKVertinoPMAnaniaFASharmaD2007Leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. Journal of Biological Chemistry2821331613325.

  • SivaramanVSWangHNuovoGJMalbonCC1997Hyperexpression of mitogen-activated protein kinase in human breast cancer. Journal of Clinical Investigation9914781483.

  • SolbergRAasVThoresenGHKaseETDrevonCARustanACReselandJE2005Leptin expression in human primary skeletal muscle cells is reduced during differentiation. Journal of Cellular Biochemistry968996.

  • TakahataCMiyoshiYIraharaNTaguchiTTamakiYNoguchiS2007Demonstration of adiponectin receptors 1 and 2 mRNA expression in human breast cancer cells. Cancer Letters250229236.

  • TreeckOLattrichCJuhasz-BoessIBuchholzSPfeilerGOrtmannO2008Adiponectin differentially affects gene expression in human mammary epithelial and breast cancer cells. British Journal of Cancer9912461250.

  • WangYLamJBLamKSLiuJLamMCHooRLWuDCooperGJXuA2006Adiponectin modulates the glycogen synthase kinase-3β/β-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Research661146211470.

  • WilliamsCJMitsiadesNSozopoulosEHsiAWolkANifliAPTseleni-BalafoutaSMantzorosCS2008Adiponectin receptor expression is elevated in colorectal carcinomas but not in gastrointestinal stromal tumors. Endocrine-Related Cancer15289299.

  • YehCSWangJYChengTLJuanCHWuCHLinSR2006Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by microarray-bioinformatics analysis. Cancer Letters233297308.

  • YonezawaSGotoMYamadaNHigashiMNomotoM2008Expression profiles of MUC1, MUC2, and MUC4 mucins in human neoplasms and their relationship with biological behavior. Proteomics833293341.

  • ZhangYProencaRMaffeiMBaroneMLeopoldLFriedmanJM1994Positional cloning of the mouse obese gene and its human homologue. Nature372425432.

 

An official journal of

Society for Endocrinology

Sections

Figures

  • Immunohistochemical detection of AdipoR1, AdipoR2 and Ob-Rt in breast tissue. Invasive ductal cancer cells express AdipoR1 (A), AdipoR2 (B) and Ob-Rt (C). Healthy adjacent tissue presents immunopositivity for AdipoR1 (D), AdipoR2 (E) and Ob-Rt (F).

    View in gallery
  • Expression of adiponectin, leptin and their specific receptors in MCF-7 breast cancer cells. The expression of adiponectin, leptin and their receptors was analysed by quantitative RT-PCR as described in Materials and Methods (A). Bars are the means ± S.E.M. obtained from five independent experiments. The protein expression of adiponectin, leptin and their receptors was investigated by immunohistochemistry (B).

    View in gallery
  • Effect of adiponectin, leptin and both adipokines on MCF-7 breast cancer cell proliferation. Breast cancer cells were exposed to adiponectin (A), leptin (B) or both adipokines (C) for the times indicated. Bars are the means ± S.E.M. obtained from five determinations. *Significant difference compared to control (P<0.05, t-test).

    View in gallery
  • Effect of adiponectin and leptin on their own pathways. MCF-7 breast cancer cells were exposed to adiponectin (10 μg/ml) or leptin (1 μg/ml) for 96 h. The expression of adiponectin, leptin and their receptors was analysed by quantitative RT-PCR as described in Materials and methods. Bars are the means ± S.E.M. obtained from five determinations. *Significant difference compared to control (P<0.05, t-test), #Statistical trend compared to control (P<0.1, t-test).

    View in gallery
  • qRT-PCR validation of candidate genes. Data obtained from microarray experiments (open bars) and qRT-PCR analysis (solid bars) are shown. *Significant difference compared to control (P<0.05, t-test), #Statistical trend compared to control (P<0.1, t-test).

    View in gallery

References

ArditiJDVenihakiMKaralisKPChrousosGP2007Antiproliferative effect of adiponectin on MCF7 breast cancer cells: a potential hormonal link between obesity and cancer. Hormone and Metabolic Research39913.

AritaYKiharaSOuchiNTakahashiMMaedaKMiyagawaJHottaKShimomuraINakamuraTMiyaokaK1999Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochemical and Biophysical Research Communications2577983.

BauerMAustGSchumacherU2004Different transcriptional expression of KIAA1324 and its splicing variants in human carcinoma cell lines with different metastatic capacity. Oncology Reports11677680.

BuhlerHSchallerG2005Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo. Molecular Cancer Research3365371.

Caldefie-ChezetFPoulinAVassonMP2003Leptin regulates functional capacities of polymorphonuclear neutrophils. Free Radical Research37809814.

Caldefie-ChezetFDamezMde LatourMKonskaGMishellaniFFusillierCGuerryMPenault-LlorcaFGuillotJVassonMP2005Leptin: a proliferative factor for breast cancer? Study on human ductal carcinoma. Biochemical and Biophysical Research Communications334737741.

CatalanoSMarsicoSGiordanoCMauroLRizzaPPannoMLAndoS2003Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. Journal of Biological Chemistry2782866828676.

CatalanoSMauroLMarsicoSGiordanoCRizzaPRagoVMontanaroDMaggioliniMPannoMLAndoS2004Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. Journal of Biological Chemistry2791990819915.

ChenCChangYCLiuCLChangKJGuoIC2006aLeptin-induced growth of human ZR-75-1 breast cancer cells is associated with up-regulation of cyclin D1 and c-Myc and down-regulation of tumor suppressor p53 and p21WAF1/CIP1. Breast Cancer Research and Treatment98121132.

ChenDCChungYFYehYTChaungHCKuoFCFuOYChenHYHouMFYuanSS2006bSerum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Letters237109114.

ChuSYLeeNCWingoPASenieRTGreenbergRSPetersonHB1991The relationship between body mass and breast cancer among women enrolled in the Cancer and Steroid Hormone Study. Journal of Clinical Epidemiology4411971206.

DebitonEMadelmontJCLegaultJBarthomeufC2003Sanguinarine-induced apoptosis is associated with an early and severe cellular glutathione depletion. Cancer Chemotherapy and Pharmacology51474482.

De VosPSaladinRAuwerxJStaelsB1995Induction of ob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake. Journal of Biological Chemistry2701595815961.

DieudonneMNMachinal-QuelinFSerazin-LeroyVLeneveuMCPecqueryRGiudicelliY2002Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochemical and Biophysical Research Communications293622628.

DieudonneMNBussiereMDos SantosELeneveuMCGiudicelliYPecqueryR2006Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochemical and Biophysical Research Communications345271279.

Dos SantosEBenaitreauDDieudonneMNLeneveuMCSerazinVGiudicelliYPecqueryR2008Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncology Reports20971977.

ElstonCWEllisIO1991Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology19403410.

FentonJIBirminghamJMHurstingSDHordNG2008Adiponectin blocks multiple signaling cascades associated with leptin-induced cell proliferation in Apc Min/+ colon epithelial cells. International Journal of Cancer12224372445.

Goncalves-MendesNBlanchonLMeinielADastugueBSapinV2004Placental expression of SCO-spondin during mouse and human development. Gene Expression Patterns4309314.

GrossmannMENkhataKJMizunoNKRayAClearyMP2008Effects of adiponectin on breast cancer cell growth and signaling. British Journal of Cancer98370379.

HanCZhangHTDuLLiuXJingJZhaoXYangXTianB2005Serum levels of leptin, insulin, and lipids in relation to breast cancer in China. Endocrine261924.

HuXJunejaSCMaihleNJClearyMP2002Leptin – a growth factor in normal and malignant breast cells and for normal mammary gland development. Journal of the National Cancer Institute9417041711.

HuLDZouHFZhanSXCaoKM2008EVL (Ena/VASP-like) expression is up-regulated in human breast cancer and its relative expression level is correlated with clinical stages. Oncology Reports1910151020.

JardeTCaldefie-ChezetFDamezMMishellanyFPenault-LlorcaFGuillotJVassonMP2008aLeptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma. Oncology Reports19905911.

JardeTCaldefie-ChezetFDamezMMishellanyFPerroneDPenault-LlorcaFGuillotJVassonMP2008bAdiponectin and leptin expression in primary ductal breast cancer and in adjacent healthy epithelial and myoepithelial tissue. Histopathology53484487.

KangJHLeeYYYuBYYangBSChoKHYoonDKRohYK2005Adiponectin induces growth arrest and apoptosis of MDA-MB-231 breast cancer cell. Archives of Pharmacological Research2812631269.

KershawEEFlierJS2004Adipose tissue as an endocrine organ. Journal of Clinical Endocrinology and Metabolism8925482556.

KleinSWaddenTSugermanHJ2002AGA technical review on obesity. Gastroenterology123882932.

KornerAPazaitou-PanayiotouKKelesidisTKelesidisIWilliamsCJKapraraABullenJNeuwirthATseleniSMitsiadesN2007Total and high-molecular-weight adiponectin in breast cancer: in vitro and in vivo studies. Journal of Clinical Endocrinology and Metabolism9210411048.

KoshibaHKitawakiJIshiharaHKadoNKusukiITsukamotoKHonjoH2001Progesterone inhibition of functional leptin receptor mRNA expression in human endometrium. Molecular Human Reproduction7567572.

KravekaJMLiLSzulcZMBielawskiJOgretmenBHannunYAObeidLMBielawskaA2007Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. Journal of Biological Chemistry2821671816728.

LagoFDieguezCGomez-ReinoJGualilloO2007The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine and Growth Factor Reviews18313325.

LahmannPHHoffmannKAllenNvan GilsCHKhawKTTehardBBerrinoFTjonnelandABigaardJOlsenA2004Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer And Nutrition (EPIC). International Journal of Cancer111762771.

Le CorreLChalabiNDelortLBignonYJBernard-GallonDJ2006Differential expression of genes induced by resveratrol in human breast cancer cell lines. Nutrition and Cancer56193203.

MaedaKOkuboKShimomuraIFunahashiTMatsuzawaYMatsubaraK1996cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose most abundant gene transcript 1). Biochemical and Biophysical Research Communications221286289.

MantzorosCPetridouEDessyprisNChavelasCDalamagaMAlexeDMPapadiamantisYMarkopoulosCSpanosEChrousosG2004Adiponectin and breast cancer risk. Journal of Clinical Endocrinology and Metabolism8911021107.

MatsubaraMMaruokaSKatayoseS2002Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. European Journal of Endocrinology147173180.

MixHWidjajaAJandlOCornbergMKaulAGokeMBeilWKuskeMBrabantGMannsMP2000Expression of leptin and leptin receptor isoforms in the human stomach. Gut47481486.

MiyoshiYFunahashiTKiharaSTaguchiTTamakiYMatsuzawaYNoguchiS2003Association of serum adiponectin levels with breast cancer risk. Clinical Cancer Research956995704.

MounzihKLuRChehabFF1997Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology13811901193.

NakayamaSMiyoshiYIshiharaHNoguchiS2007Growth-inhibitory effect of adiponectin via adiponectin receptor 1 on human breast cancer cells through inhibition of S-phase entry without inducing apoptosis. Breast Cancer Research and Treatment112405410.

NeumeierMWeigertJSchafflerAWehrweinGMuller-LadnerUScholmerichJWredeCBuechlerC2006Different effects of adiponectin isoforms in human monocytic cells. Journal of Leukocyte Biology79803808.

ProkopcovaJKleiblZBanwellCMPohlreichP2007The role of ATM in breast cancer development. Breast Cancer Research and Treatment104121128.

RayANkhataKJClearyMP2007Effects of leptin on human breast cancer cell lines in relationship to estrogen receptor and HER2 status. International Journal of Oncology3014991509.

RuhlCEEverhartJE2001Leptin concentrations in the United States: relations with demographic and anthropometric measures. American Journal of Clinical Nutrition74295301.

SaxenaNKVertinoPMAnaniaFASharmaD2007Leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. Journal of Biological Chemistry2821331613325.

SivaramanVSWangHNuovoGJMalbonCC1997Hyperexpression of mitogen-activated protein kinase in human breast cancer. Journal of Clinical Investigation9914781483.

SolbergRAasVThoresenGHKaseETDrevonCARustanACReselandJE2005Leptin expression in human primary skeletal muscle cells is reduced during differentiation. Journal of Cellular Biochemistry968996.

TakahataCMiyoshiYIraharaNTaguchiTTamakiYNoguchiS2007Demonstration of adiponectin receptors 1 and 2 mRNA expression in human breast cancer cells. Cancer Letters250229236.

TreeckOLattrichCJuhasz-BoessIBuchholzSPfeilerGOrtmannO2008Adiponectin differentially affects gene expression in human mammary epithelial and breast cancer cells. British Journal of Cancer9912461250.

WangYLamJBLamKSLiuJLamMCHooRLWuDCooperGJXuA2006Adiponectin modulates the glycogen synthase kinase-3β/β-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Research661146211470.

WilliamsCJMitsiadesNSozopoulosEHsiAWolkANifliAPTseleni-BalafoutaSMantzorosCS2008Adiponectin receptor expression is elevated in colorectal carcinomas but not in gastrointestinal stromal tumors. Endocrine-Related Cancer15289299.

YehCSWangJYChengTLJuanCHWuCHLinSR2006Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by microarray-bioinformatics analysis. Cancer Letters233297308.

YonezawaSGotoMYamadaNHigashiMNomotoM2008Expression profiles of MUC1, MUC2, and MUC4 mucins in human neoplasms and their relationship with biological behavior. Proteomics833293341.

ZhangYProencaRMaffeiMBaroneMLeopoldLFriedmanJM1994Positional cloning of the mouse obese gene and its human homologue. Nature372425432.

Information

Cited By

PubMed

Google Scholar

Related Articles

Altmetrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 114 114
PDF Downloads 10 10 10